Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Clin Cancer Res ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819400

RESUMO

PURPOSE: Estrogen Receptor (ER) alpha signaling is a known driver of ER-positive (ER+)/human epidermal growth factor receptor 2 negative (HER2-) breast cancer. Combining endocrine therapy (ET) such as fulvestrant with CDK4/6, mTOR or PI3K inhibitors is now a central strategy for the treatment of ER+ advanced breast cancer. However, suboptimal ER inhibition and resistance resulting from ESR1 mutation dictates that new therapies are needed. EXPERIMENTAL DESIGN: A medicinal chemistry campaign identified vepdegestrant (ARV-471), a selective, orally bioavailable, potent small molecule PROteolysis-TArgeting Chimera (PROTAC®) degrader of ER. We used biochemical and intracellular target engagement assays to demonstrate the mechanism of action of vepdegestrant, and ESR1 wild-type and mutant ER+ preclinical breast cancer models to demonstrate ER degradation-mediated tumor growth inhibition. RESULTS: Vepdegestrant induced ≥90% degradation of wild-type (WT) and mutant ER, inhibited ER-dependent breast cancer cell line proliferation in-vitro and achieved significant tumor growth inhibition (TGI) (87-123%) in MCF7 orthotopic xenograft models, better than the ET agent fulvestrant (31-80% TGI). In the hormone-independent ER Y537S patient derived xenograft (PDX) breast cancer model ST941/HI, vepdegestrant achieved tumor regressions and was similarly efficacious in the ST941/HI/PBR palbociclib-resistant model (102% TGI). Vepdegestrant induced robust tumor regressions in combination with each of the CDK4/6 inhibitors palbociclib, abemaciclib, and ribociclib, the mTOR inhibitor everolimus, and the PI3K inhibitors alpelisib and inavolisib. CONCLUSIONS: Vepdegestrant achieved greater ER degradation in-vivo compared to fulvestrant, which correlated with improved tumor growth inhibition, suggesting vepdegestrant could be a more effective backbone ET for patients with ER+/HER2- breast cancer.

2.
J Mol Biol ; 435(16): 168190, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37385580

RESUMO

Biomolecular condensates (BMCs) play an important role in the replication of a growing number of viruses, but many important mechanistic details remain to be elucidated. Previously, we demonstrated that the pan-retroviral nucleocapsid (NC) and HIV-1 pr55Gag (Gag) proteins phase separate into condensates, and that HIV-1 protease (PR)-mediated maturation of Gag and Gag-Pol precursor proteins yields self-assembling BMCs that have HIV-1 core architecture. Using biochemical and imaging techniques, we aimed to further characterize the phase separation of HIV-1 Gag by determining which of its intrinsically disordered regions (IDRs) influence the formation of BMCs, and how the HIV-1 viral genomic RNA (gRNA) could influence BMC abundance and size. We found that mutations in the Gag matrix (MA) domain or the NC zinc finger motifs altered condensate number and size in a salt-dependent manner. Gag BMCs were also bimodally influenced by the gRNA, with a condensate-promoting regime at lower protein concentrations and a gel dissolution at higher protein concentrations. Interestingly, incubation of Gag with CD4+ T cell nuclear lysates led to the formation of larger BMCs compared to much smaller ones observed in the presence of cytoplasmic lysates. These findings suggest that the composition and properties of Gag-containing BMCs may be altered by differential association of host factors in nuclear and cytosolic compartments during virus assembly. This study significantly advances our understanding of HIV-1 Gag BMC formation and provides a foundation for future therapeutic targeting of virion assembly.


Assuntos
Condensados Biomoleculares , HIV-1 , Interações Hospedeiro-Patógeno , RNA Viral , Montagem de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/virologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , HIV-1/genética , HIV-1/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Genoma Viral , Humanos
3.
J Mol Biol ; 435(16): 168182, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37328094

RESUMO

Biomolecular condensates (BMCs) play important roles incellular structures includingtranscription factories, splicing speckles, and nucleoli. BMCs bring together proteins and other macromolecules, selectively concentrating them so that specific reactions can occur without interference from the surrounding environment. BMCs are often made up of proteins that contain intrinsically disordered regions (IDRs), form phase-separated spherical puncta, form liquid-like droplets that undergo fusion and fission, contain molecules that are mobile, and are disrupted with phase-dissolving drugs such as 1,6-hexanediol. In addition to cellular proteins, many viruses, including influenza A, SARS-CoV-2, and human immunodeficiency virus type 1 (HIV-1) encode proteins that undergo phase separation and rely on BMC formation for replication. In prior studies of the retrovirus Rous sarcoma virus (RSV), we observed that the Gag protein forms discrete spherical puncta in the nucleus, cytoplasm, and at the plasma membrane that co-localize with viral RNA and host factors, raising the possibility that RSV Gag forms BMCs that participate in the intracellular phase of the virion assembly pathway. In our current studies, we found that Gag contains IDRs in the N-terminal (MAp2p10) and C-terminal (NC) regions of the protein and fulfills many criteria of BMCs. Although the role of BMC formation in RSV assembly requires further study, our results suggest the biophysical properties of condensates are required for the formation of Gag complexes in the nucleus and the cohesion of these complexes as they traffic through the nuclear pore, into the cytoplasm, and to the plasma membrane, where the final assembly and release of virus particles occurs.


Assuntos
Condensados Biomoleculares , Produtos do Gene gag , Proteínas Intrinsicamente Desordenadas , Vírus do Sarcoma de Rous , Humanos , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/virologia , Produtos do Gene gag/química , Produtos do Gene gag/metabolismo , Vírus do Sarcoma de Rous/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Transição de Fase
4.
bioRxiv ; 2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37066255

RESUMO

Biomolecular condensates (BMCs) play important roles in cellular structures including transcription factories, splicing speckles, and nucleoli. BMCs bring together proteins and other macromolecules, selectively concentrating them so that specific reactions can occur without interference from the surrounding environment. BMCs are often made up of proteins that contain intrinsically disordered regions (IDRs), form phase-separated spherical puncta, form liquid-like droplets that undergo fusion and fission, contain molecules that are mobile, and are disrupted with phase-dissolving drugs such as 1,6-hexanediol. In addition to cellular proteins, many viruses, including influenza A, SARS-CoV-2, and human immunodeficiency virus type 1 (HIV-1) encode proteins that undergo phase separation and rely on BMC formation for replication. In prior studies of the retrovirus Rous sarcoma virus (RSV), we observed that the Gag protein forms discrete spherical puncta in the nucleus, cytoplasm, and at the plasma membrane that co-localize with viral RNA and host factors, raising the possibility that RSV Gag forms BMCs that participate in the virion intracellular assembly pathway. In our current studies, we found that Gag contains IDRs in the N-terminal (MAp2p10) and C-terminal (NC) regions of the protein and fulfills many criteria of BMCs. Although the role of BMC formation in RSV assembly requires further study, our results suggest the biophysical properties of condensates are required for the formation of Gag complexes in the nucleus and the cohesion of these complexes as they traffic through the nuclear pore, into the cytoplasm, and to the plasma membrane, where the final assembly and release of virus particles occurs.

5.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36629252

RESUMO

Iron deficiency anemia is a significant problem in piglets, as they are born with insufficient iron stores for supporting their rapid body growth. Further, sows' milk contains inadequate iron levels for meeting the demands of piglet rapid growth in the pre-wean stage. The forms of iron present in the milk are essential to understanding bioavailability and potential routes for supplementing iron to mitigate iron deficiency anemia in piglets. Recently, our studies showed that H-ferritin (FTH1) is involved in iron transport to different tissues and can be used as an oral iron supplement to correct iron deficiency in rats and monkeys. In this study, we investigate the FTH1 levels in colostrum and milk in Yorkshires-crossbred sows (n = 27) and collected samples at the 1st, 15th, and 28th days of lactation to measure FTH1. Colostrum and milk were found to have FTH1, but there is no significant difference between the different days of lactation. FTH1 has been observed to be enriched in extracellular vesicles (EVs) of other species, and therefore examined the EVs in the samples. Colostrum-derived EVs were enriched with L-ferritin compared to FTH1, while in milk-derived EVs, only FTH1 was detected (P = 0.04). In milk-derived EVs, FTH1 was significantly higher (P = 0.021; P = 006) than FTH1 in colostrum-derived EVs. Furthermore, FTH1 levels of milk-derived EVs were significantly higher (P = 0.0002; P = 0004) than whole milk and colostrum FTH1. These results indicate that FTH1 is enriched in the milk-derived EVs and suggest that EVs play a predominant role in the FTH1 delivery mechanism for the piglet. The extent to which FTH1 in EVs accounts for the overall iron delivery mechanism in piglets is yet to be determined.


Colostrum and milk are the primary sources of nutrition for lactating mammals. Iron is an essential nutrient for nursing mammals. Piglets are routinely iron deficient and do not obtain adequate iron from sows' milk further contributing to anemia observed in young pigs. Additional information about the proteins that carry iron from the sow's breast milk to understand the bioavailability of iron and potential routes for reducing the incidence of anemia in offspring are clearly needed. We have discovered that H-ferritin (FTH1) is a potent iron transport protein and is not limited to iron storage as previously thought. Therefore, our objective was to determine whether the FTH1 is present in the sow's colostrum and milk. Furthermore, there are extracellular vesicles released from cells that are known to transport FTH1 and are reportedly present in sows' milk. Our study showed that FTH1 was present in the colostrum and milk and enriched in the milk-derived EVs. This study reveals a new protein and mechanism for iron delivery during lactation in sows that may be targeted to decrease iron deficiency in piglets.


Assuntos
Anemia Ferropriva , Doenças dos Suínos , Gravidez , Animais , Suínos , Feminino , Ratos , Leite , Colostro , Apoferritinas , Ferro , Anemia Ferropriva/veterinária , Suplementos Nutricionais , Lactação , Ração Animal/análise
6.
Viruses ; 13(10)2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34696329

RESUMO

Antibodies targeting the spike (S) and nucleocapsid (N) proteins of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are essential tools. In addition to important roles in the treatment and diagnosis of infection, the availability of high-quality specific antibodies for the S and N proteins is essential to facilitate basic research of virus replication and in the characterization of mutations responsible for variants of concern. We have developed panels of mouse and rabbit monoclonal antibodies (mAbs) to the SARS-CoV-2 spike receptor-binding domain (S-RBD) and N protein for functional and antigenic analyses. The mAbs to the S-RBD were tested for neutralization of native SARS-CoV-2, with several exhibiting neutralizing activity. The panels of mAbs to the N protein were assessed for cross-reactivity with the SARS-CoV and Middle East respiratory syndrome (MERS)-CoV N proteins and could be subdivided into sets that showed unique specificity for SARS-CoV-2 N protein, cross-reactivity between SARS-CoV-2 and SARS-CoV N proteins only, or cross-reactivity to all three coronavirus N proteins tested. Partial mapping of N-reactive mAbs were conducted using truncated fragments of the SARS-CoV-2 N protein and revealed near complete coverage of the N protein. Collectively, these sets of mouse and rabbit monoclonal antibodies can be used to examine structure/function studies for N proteins and to define the surface location of virus neutralizing epitopes on the RBD of the S protein.


Assuntos
Betacoronavirus/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Sítios de Ligação/imunologia , COVID-19/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Reações Cruzadas , Epitopos/metabolismo , Humanos , Camundongos , Testes de Neutralização , Fosfoproteínas/imunologia , Fosfoproteínas/metabolismo , Ligação Proteica/imunologia , Coelhos , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Proteínas do Envelope Viral/metabolismo
7.
Mol Cell Endocrinol ; 493: 110452, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31125586

RESUMO

Nuclear receptors comprise a class of intracellular transcription factors whose major role is to act as sensors of various stimuli and to convert the external signal into a transcriptional output. Nuclear receptors (NRs) achieve this by possessing a ligand binding domain, which can bind cell permeable agonists, a DNA-binding domain, which binds the upstream sequences of target genes, and a regulatory domain that recruits the transcriptional machinery. The ligand binding alters the activation state of the NR, either by activating or inactivating its transcriptional output. Given the central role of NRs in signal transduction, many currently approved therapeutics modulate the activity of NRs. Here we discuss how PROTAC degraders afford a novel approach to abrogate the downstream signaling activity of NRs. We highlight six broad functional reasons why PROTAC degraders are preferable to the classical ligand binding pocket antagonists, with specific examples provided for each category. Lastly, as Androgen Receptor and Estrogen Receptor PROTAC degraders are being pursued as treatment for prostate cancer and breast cancer, respectively, a rationale is provided for the translational utility for the degradation of these two NRs.


Assuntos
Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Desenho de Fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Ligantes , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Domínios Proteicos , Proteólise , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/uso terapêutico
8.
Cell ; 177(3): 722-736.e22, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30955890

RESUMO

Insulin receptor (IR) signaling is central to normal metabolic control and dysregulated in prevalent chronic diseases. IR binds insulin at the cell surface and transduces rapid signaling via cytoplasmic kinases. However, mechanisms mediating long-term effects of insulin remain unclear. Here, we show that IR associates with RNA polymerase II in the nucleus, with striking enrichment at promoters genome-wide. The target genes were highly enriched for insulin-related functions including lipid metabolism and protein synthesis and diseases including diabetes, neurodegeneration, and cancer. IR chromatin binding was increased by insulin and impaired in an insulin-resistant disease model. Promoter binding by IR was mediated by coregulator host cell factor-1 (HCF-1) and transcription factors, revealing an HCF-1-dependent pathway for gene regulation by insulin. These results show that IR interacts with transcriptional machinery at promoters and identify a pathway regulating genes linked to insulin's effects in physiology and disease.


Assuntos
Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Receptor de Insulina/metabolismo , Animais , Linhagem Celular Tumoral , Cromatina/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Fator C1 de Célula Hospedeira/antagonistas & inibidores , Fator C1 de Célula Hospedeira/genética , Fator C1 de Célula Hospedeira/metabolismo , Humanos , Insulina/metabolismo , Insulina/farmacologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Ligação Proteica , Subunidades Proteicas/metabolismo , Interferência de RNA , RNA Polimerase II/metabolismo , RNA Interferente Pequeno/metabolismo , Receptor de Insulina/química , Transdução de Sinais/efeitos dos fármacos
9.
Value Health ; 20(8): 1034-1040, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28964434

RESUMO

BACKGROUND: Diabetic retinopathy (DR) is one of the leading causes of vision loss and blindness in Canada. Eye examinations play an important role in early detection. However, DR screening by optometrists is not always universally covered by public or private health insurance plans. This study assessed whether expanding public health coverage to include diabetic eye examinations for retinopathy by optometrists is cost-effective from the perspective of the health care system. METHODS: We conducted a cost-utility analysis of extended coverage for diabetic eye examinations in Prince Edward Island to include examinations by optometrists, not currently publicly covered. We used a Markov chain to simulate disease burden based on eye examination rates and DR progression over a 30-year time horizon. Results were presented as an incremental cost per quality-adjusted life year (QALY) gained. A series of one-way and probabilistic sensitivity analyses were performed. RESULTS: Extending public health coverage to eye examinations by optometrists was associated with higher costs ($9,908,543.32) and improved QALYs (156,862.44), over 30 years, resulting in an incremental cost-effectiveness ratio of $1668.43/QALY gained. Sensitivity analysis showed that the most influential determinants of the results were the cost of optometric screening and selected utility scores. At the commonly used threshold of $50,000/QALY, the probability that the new policy was cost-effective was 99.99%. CONCLUSIONS: Extending public health coverage to eye examinations by optometrists is cost-effective based on a commonly used threshold of $50,000/QALY. Findings from this study can inform the decision to expand public-insured optometric services for patients with diabetes.


Assuntos
Retinopatia Diabética/diagnóstico , Cobertura do Seguro/economia , Programas de Rastreamento/métodos , Programas Nacionais de Saúde/economia , Anos de Vida Ajustados por Qualidade de Vida , Idoso , Canadá , Efeitos Psicossociais da Doença , Análise Custo-Benefício , Retinopatia Diabética/economia , Progressão da Doença , Humanos , Cadeias de Markov , Programas de Rastreamento/economia , Pessoa de Meia-Idade , Optometristas/economia , Ilha do Príncipe Eduardo , Probabilidade , Fatores de Tempo
10.
Mol Ther ; 25(5): 1199-1208, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28341561

RESUMO

Duvoglustat HCl (AT2220, 1-deoxynojirimycin) is an investigational pharmacological chaperone for the treatment of acid α-glucosidase (GAA) deficiency, which leads to the lysosomal storage disorder Pompe disease, which is characterized by progressive accumulation of lysosomal glycogen primarily in heart and skeletal muscles. The current standard of care is enzyme replacement therapy with recombinant human GAA (alglucosidase alfa [AA], Genzyme). Based on preclinical data, oral co-administration of duvoglustat HCl with AA increases exposure of active levels in plasma and skeletal muscles, leading to greater substrate reduction in muscle. This phase 2a study consisted of an open-label, fixed-treatment sequence that evaluated the effect of single oral doses of 50 mg, 100 mg, 250 mg, or 600 mg duvoglustat HCl on the pharmacokinetics and tissue levels of intravenously infused AA (20 mg/kg) in Pompe patients. AA alone resulted in increases in total GAA activity and protein in plasma compared to baseline. Following co-administration with duvoglustat HCl, total GAA activity and protein in plasma were further increased 1.2- to 2.8-fold compared to AA alone in all 25 Pompe patients; importantly, muscle GAA activity was increased for all co-administration treatments from day 3 biopsy specimens. No duvoglustat-related adverse events or drug-related tolerability issues were identified.


Assuntos
1-Desoxinojirimicina/uso terapêutico , Doença de Depósito de Glicogênio Tipo II/tratamento farmacológico , Lisossomos/enzimologia , Músculo Esquelético/efeitos dos fármacos , alfa-Glucosidases/farmacocinética , Administração Oral , Adulto , Esquema de Medicação , Sinergismo Farmacológico , Quimioterapia Combinada , Terapia de Reposição de Enzimas/métodos , Feminino , Doença de Depósito de Glicogênio Tipo II/enzimologia , Doença de Depósito de Glicogênio Tipo II/patologia , Humanos , Infusões Intravenosas , Lisossomos/patologia , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Segurança do Paciente , Resultado do Tratamento , alfa-Glucosidases/sangue
11.
Psychoneuroendocrinology ; 80: 67-73, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28319850

RESUMO

Hypersexual Disorder (HD) defined as non-paraphilic sexual desire disorder with components of compulsivity, impulsivity and behavioral addiction, and proposed as a diagnosis in the DSM 5, shares some overlapping features with substance use disorder including common neurotransmitter systems and dysregulated hypothalamic-pituitary-adrenal (HPA) axis function. In this study, comprising 67 HD male patients and 39 male healthy volunteers, we aimed to identify HPA-axis coupled CpG-sites, in which modifications of the epigenetic profile are associated with hypersexuality. The genome-wide methylation pattern was measured in whole blood using the Illumina Infinium Methylation EPIC BeadChip, measuring the methylation state of over 850K CpG sites. Prior to analysis, the global DNA methylation pattern was pre-processed according to standard protocols and adjusted for white blood cell type heterogeneity. We included CpG sites located within 2000bp of the transcriptional start site of the following HPA-axis coupled genes: Corticotropin releasing hormone (CRH), corticotropin releasing hormone binding protein (CRHBP), corticotropin releasing hormone receptor 1 (CRHR1), corticotropin releasing hormone receptor 2 (CRHR2), FKBP5 and the glucocorticoid receptor (NR3C1). We performed multiple linear regression models of methylation M-values to a categorical variable of hypersexuality, adjusting for depression, dexamethasone non-suppression status, Childhood Trauma Questionnaire total score and plasma levels of TNF-alpha and IL-6. Of 76 tested individual CpG sites, four were nominally significant (p<0.05), associated with the genes CRH, CRHR2 and NR3C1. Cg23409074-located 48bp upstream of the transcription start site of the CRH gene - was significantly hypomethylated in hypersexual patients after corrections for multiple testing using the FDR-method. Methylation levels of cg23409074 were positively correlated with gene expression of the CRH gene in an independent cohort of 11 healthy male subjects. The methylation levels at the identified CRH site, cg23409074, were significantly correlated between blood and four different brain regions. CRH is an important integrator of neuroendocrine stress responses in the brain, with a key role in the addiction processes. Our results show epigenetic changes in the CRH gene related to hypersexual disorder in men.


Assuntos
Hormônio Liberador da Corticotropina/genética , Disfunções Sexuais Psicogênicas/genética , Disfunções Sexuais Psicogênicas/fisiopatologia , Adulto , Hormônio Liberador da Corticotropina/metabolismo , Ilhas de CpG , Metilação de DNA , Epigênese Genética/genética , Humanos , Sistema Hipotálamo-Hipofisário/fisiopatologia , Interleucina-6/metabolismo , Masculino , Metilação , Pessoa de Meia-Idade , Sistema Hipófise-Suprarrenal/fisiopatologia , Receptores de Hormônio Liberador da Corticotropina/genética , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Receptores de Glucocorticoides/metabolismo , Disfunções Sexuais Psicogênicas/metabolismo , Estresse Psicológico/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
12.
J Virol ; 91(3)2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27852858

RESUMO

Hepatitis B virus (HBV) encodes a multifunction reverse transcriptase or polymerase (P), which is composed of several domains. The terminal protein (TP) domain is unique to HBV and related hepadnaviruses and is required for specifically binding to the viral pregenomic RNA (pgRNA). Subsequently, the TP domain is necessary for pgRNA packaging into viral nucleocapsids and the initiation of viral reverse transcription for conversion of the pgRNA to viral DNA. Uniquely, the HBV P protein initiates reverse transcription via a protein priming mechanism using the TP domain as a primer. No structural homologs or high-resolution structure exists for the TP domain. Secondary structure prediction identified three disordered loops in TP with highly conserved sequences. A meta-analysis of mutagenesis studies indicated these predicted loops are almost exclusively where functionally important residues are located. Newly constructed TP mutations revealed a priming loop in TP which plays a specific role in protein-primed DNA synthesis beyond simply harboring the site of priming. Substitutions of potential sites of phosphorylation surrounding the priming site demonstrated that these residues are involved in interactions critical for priming but are unlikely to be phosphorylated during viral replication. Furthermore, the first 13 and 66 TP residues were shown to be dispensable for protein priming and pgRNA binding, respectively. Combining current and previous mutagenesis work with sequence analysis has increased our understanding of TP structure and functions by mapping specific functions to distinct predicted secondary structures and will facilitate antiviral targeting of this unique domain. IMPORTANCE: HBV is a major cause of viral hepatitis, liver cirrhosis, and hepatocellular carcinoma. One important feature of this virus is its polymerase, the enzyme used to create the DNA genome from a specific viral RNA by reverse transcription. One region of this polymerase, the TP domain, is required for association with the viral RNA and production of the DNA genome. Targeting the TP domain for antiviral development is difficult due to the lack of homology to other proteins and high-resolution structure. This study mapped the TP functions according to predicted secondary structure, where it folds into alpha helices or unstructured loops. Three predicted loops were found to be the most important regions functionally and the most conserved evolutionarily. Identification of these functional subdomains in TP will facilitate its targeting for antiviral development.


Assuntos
Produtos do Gene pol/genética , Produtos do Gene pol/metabolismo , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Domínios e Motivos de Interação entre Proteínas , Sequência de Aminoácidos , Sequência Conservada , Produtos do Gene pol/química , Humanos , Modelos Moleculares , Mutação , Fenótipo , Conformação Proteica em alfa-Hélice , RNA Mensageiro/genética , RNA Viral , Proteínas de Ligação a RNA
13.
Acta Ophthalmol ; 95(3): e206-e211, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27678201

RESUMO

PURPOSE: To correlate angiogenic cytokines in the aqueous humour with total retinal blood flow in subjects with type 2 diabetes with non-proliferative diabetic retinopathy (NPDR). METHODS: A total of 17 controls and 16 NPDR patients were recruited into the study. Aqueous humour was collected at the start of cataract surgery to assess the concentration of 14 angiogenic cytokines. Aqueous humour was analysed using the suspension array method. Six images were acquired to assess total retinal blood flow (TRBF) using the prototype RTVue™ Doppler Fourier domain optical coherence tomography (Doppler FD-OCT) (Optovue, Inc., Fremont, CA) using a double circular scan protocol, 1 month postsurgery. At the same visit, forearm blood was collected to determine glycosylated haemoglobin (A1c). RESULTS: Transforming growth factor beta (TGF-ß1, TGF-ß2) and PLGF were increased while FGF-1 was reduced in NPDR compared to controls (Bonferroni corrected, p < 0.003 for all). Total retinal blood flow (TRBF) was significantly reduced in the NPDR group compared to controls (33.1 ± 9.9 versus 43.3 ± 5.3 µl/min, p = 0.002). Aqueous FGF-1 significantly correlated with TRBF in the NPDR group (r = 0.71, p = 0.01; r2  = 0.51). In a multiple regression analysis, A1c was found to be a significant predictor of aqueous TGF-ß1 and FGF-1 (p = 0.018 and p = 0.020, respectively). CONCLUSION: Aqueous angiogenic cytokines (TGF-ß1, TGF-ß2 and PLGF) were elevated in conjunction with a reduction in TRBF in patients with NPDR compared to controls. Non-invasive measurement of TRBF may be useful for predicting aqueous FGF-1 levels and severity of vasculopathy in DR.


Assuntos
Humor Aquoso/metabolismo , Retinopatia Diabética/metabolismo , Fator 1 de Crescimento de Fibroblastos/metabolismo , Fator de Crescimento Placentário/metabolismo , Fluxo Sanguíneo Regional/fisiologia , Vasos Retinianos/fisiopatologia , Fator de Crescimento Transformador beta/metabolismo , Idoso , Biomarcadores/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Retinopatia Diabética/diagnóstico , Retinopatia Diabética/fisiopatologia , Feminino , Humanos , Masculino , Vasos Retinianos/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos
14.
Protein Expr Purif ; 130: 137-145, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27721079

RESUMO

HIV Gag (Pr55Gag), a multidomain polyprotein that orchestrates the assembly and release of the human immunodeficiency virus (HIV), is an active target of antiretroviral inhibitor development. However, highly pure, stable, recombinant Pr55Gag has been difficult to produce in quantities sufficient for biophysical studies due to its susceptibility to proteolysis by cellular proteases during purification. Stability has been improved by using a construct that omits the p6 domain (Δp6). In vivo, p6 is crucial to the budding process and interacts with protein complexes in the ESCRT (Endosomal Sorting Complexes Required for Transport) pathway, it has been difficult to study its role in the context of Gag using in vitro approaches. Here we report the generation of a full length Gag construct containing a tobacco etch virus (TEV)-cleavable C-terminal hexahistidine tag, allowing a detailed comparison of its nucleic acid binding properties with other constructs, including untagged, Δp6, and C-terminally tagged (TEV-cleavable and non-cleavable) Gags, respectively. We have developed a standard expression and purification protocol that minimizes nucleic acid contamination and produces milligram quantities of full length Gag for in vitro studies and compound screening purposes. We found that the presence of a carboxyl-terminal hexahistidine tag changes the nucleic binding properties compared to the proteins that did not contain the tag (full length protein that was either untagged or reulted from removal of the tag during purification). The HIV Gag expression and purification protocol described herein provides a facile method of obtaining large quantities of high quality protein for investigators who wish to study the full length protein or the effect of the p6 domain on the biophysical properties of Gag.


Assuntos
DNA/química , Escherichia coli/metabolismo , HIV-1/genética , Histidina , Precursores de Proteínas , Proteínas Recombinantes de Fusão , Escherichia coli/genética , Histidina/biossíntese , Histidina/química , Histidina/genética , Histidina/isolamento & purificação , Humanos , Ligação Proteica , Precursores de Proteínas/biossíntese , Precursores de Proteínas/química , Precursores de Proteínas/genética , Precursores de Proteínas/isolamento & purificação , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação
15.
Viruses ; 8(9)2016 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-27657107

RESUMO

Retroviruses specifically package full-length, dimeric genomic RNA (gRNA) even in the presence of a vast excess of cellular RNA. The "psi" (Ψ) element within the 5'-untranslated region (5'UTR) of gRNA is critical for packaging through interaction with the nucleocapsid (NC) domain of Gag. However, in vitro Gag binding affinity for Ψ versus non-Ψ RNAs is not significantly different. Previous salt-titration binding assays revealed that human immunodeficiency virus type 1 (HIV-1) Gag bound to Ψ RNA with high specificity and relatively few charge interactions, whereas binding to non-Ψ RNA was less specific and involved more electrostatic interactions. The NC domain was critical for specific Ψ binding, but surprisingly, a Gag mutant lacking the matrix (MA) domain was less effective at discriminating Ψ from non-Ψ RNA. We now find that Rous sarcoma virus (RSV) Gag also effectively discriminates RSV Ψ from non-Ψ RNA in a MA-dependent manner. Interestingly, Gag chimeras, wherein the HIV-1 and RSV MA domains were swapped, maintained high binding specificity to cognate Ψ RNAs. Using Ψ RNA mutant constructs, determinants responsible for promoting high Gag binding specificity were identified in both systems. Taken together, these studies reveal the functional equivalence of HIV-1 and RSV MA domains in facilitating Ψ RNA selectivity by Gag, as well as Ψ elements that promote this selectivity.

16.
Cell Death Dis ; 7(9): e2386, 2016 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-27685630

RESUMO

Reactive gliosis is an early pathological feature common to most neurodegenerative diseases, yet its regulation and impact remain poorly understood. Normally astrocytes maintain a critical homeostatic balance. After stress or injury they undergo rapid parainflammatory activation, characterized by hypertrophy, and increased polymerization of type III intermediate filaments (IFs), particularly glial fibrillary acidic protein and vimentin. However, the consequences of IF dynamics in the adult CNS remains unclear, and no pharmacologic tools have been available to target this mechanism in vivo. The mammalian retina is an accessible model to study the regulation of astrocyte stress responses, and their influence on retinal neuronal homeostasis. In particular, our work and others have implicated p38 mitogen-activated protein kinase (MAPK) signaling as a key regulator of glutamate recycling, antioxidant activity and cytokine secretion by astrocytes and related Müller glia, with potent influences on neighboring neurons. Here we report experiments with the small molecule inhibitor, withaferin A (WFA), to specifically block type III IF dynamics in vivo. WFA was administered in a model of metabolic retinal injury induced by kainic acid, and in combination with a recent model of debridement-induced astrocyte reactivity. We show that WFA specifically targets IFs and reduces astrocyte and Müller glial reactivity in vivo. Inhibition of glial IF polymerization blocked p38 MAPK-dependent secretion of TNF-α, resulting in markedly reduced neuronal apoptosis. To our knowledge this is the first study to demonstrate that pharmacologic inhibition of IF dynamics in reactive glia protects neurons in vivo.


Assuntos
Apoptose/efeitos dos fármacos , Gliose/patologia , Neurônios Retinianos/patologia , Fator de Necrose Tumoral alfa/toxicidade , Vitanolídeos/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Lesões da Córnea , Modelos Animais de Doenças , Gliose/metabolismo , Imidazóis/farmacologia , Filamentos Intermediários/efeitos dos fármacos , Filamentos Intermediários/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/patologia , Polimerização/efeitos dos fármacos , Piridinas/farmacologia , Neurônios Retinianos/efeitos dos fármacos , Neurônios Retinianos/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
Mol Cell Biol ; 36(15): 2051-66, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27185880

RESUMO

Multiple organ systems require epithelial barriers for normal function, and barrier loss is a hallmark of diseases ranging from inflammation to epithelial cancers. However, the molecular processes regulating epithelial barrier maturation are not fully elucidated. After contact, epithelial cells undergo size-reductive proliferation and differentiate, creating a dense, highly ordered monolayer with high resistance barriers. We provide evidence that the tight junction protein occludin contributes to the regulation of epithelial cell maturation upon phosphorylation of S471 in its coiled-coil domain. Overexpression of a phosphoinhibitory occludin S471A mutant prevents size-reductive proliferation and subsequent tight junction maturation in a dominant manner. Inhibition of cell proliferation in cell-contacted but immature monolayers recapitulated this phenotype. A kinase screen identified G-protein-coupled receptor kinases (GRKs) targeting S471, and GRK inhibitors delayed epithelial packing and junction maturation. We conclude that occludin contributes to the regulation of size-reductive proliferation and epithelial cell maturation in a phosphorylation-dependent manner.


Assuntos
Células Epiteliais/citologia , Quinases de Receptores Acoplados a Proteína G/metabolismo , Ocludina/metabolismo , Serina/metabolismo , Junções Íntimas/metabolismo , Animais , Proliferação de Células , Cães , Células Epiteliais/metabolismo , Humanos , Células Madin Darby de Rim Canino , Ocludina/química , Ocludina/genética , Fosforilação , Domínios Proteicos
18.
PLoS One ; 10(8): e0134341, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26252393

RESUMO

UNLABELLED: Migalastat HCl (AT1001, 1-Deoxygalactonojirimycin) is an investigational pharmacological chaperone for the treatment of α-galactosidase A (α-Gal A) deficiency, which leads to Fabry disease, an X-linked, lysosomal storage disorder. The currently approved, biologics-based therapy for Fabry disease is enzyme replacement therapy (ERT) with either agalsidase alfa (Replagal) or agalsidase beta (Fabrazyme). Based on preclinical data, migalastat HCl in combination with agalsidase is expected to result in the pharmacokinetic (PK) enhancement of agalsidase in plasma by increasing the systemic exposure of active agalsidase, thereby leading to increased cellular levels in disease-relevant tissues. This Phase 2a study design consisted of an open-label, fixed-treatment sequence that evaluated the effects of single oral doses of 150 mg or 450 mg migalastat HCl on the PK and tissue levels of intravenously infused agalsidase (0.2, 0.5, or 1.0 mg/kg) in male Fabry patients. As expected, intravenous administration of agalsidase alone resulted in increased α-Gal A activity in plasma, skin, and peripheral blood mononuclear cells (PBMCs) compared to baseline. Following co-administration of migalastat HCl and agalsidase, α-Gal A activity in plasma was further significantly increased 1.2- to 5.1-fold compared to agalsidase administration alone, in 22 of 23 patients (95.6%). Importantly, similar increases in skin and PBMC α-Gal A activity were seen following co-administration of migalastat HCl and agalsidase. The effects were not related to the administered migalastat HCl dose, as the 150 mg dose of migalastat HCl increased α-Gal A activity to the same extent as the 450 mg dose. Conversely, agalsidase had no effect on the plasma PK of migalastat. No migalastat HCl-related adverse events or drug-related tolerability issues were identified. TRIAL REGISTRATION: ClinicalTrials.gov NCT01196871.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Doença de Fabry/tratamento farmacológico , Doença de Fabry/enzimologia , Isoenzimas/uso terapêutico , alfa-Galactosidase/metabolismo , 1-Desoxinojirimicina/administração & dosagem , 1-Desoxinojirimicina/sangue , 1-Desoxinojirimicina/farmacocinética , 1-Desoxinojirimicina/uso terapêutico , Administração Oral , Adulto , Área Sob a Curva , Demografia , Doença de Fabry/sangue , Humanos , Bombas de Infusão , Isoenzimas/administração & dosagem , Masculino , Pessoa de Meia-Idade , Proteínas Recombinantes , Pele/enzimologia , alfa-Galactosidase/administração & dosagem , alfa-Galactosidase/sangue , alfa-Galactosidase/uso terapêutico
19.
Nat Chem Biol ; 11(8): 611-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26075522

RESUMO

The current predominant therapeutic paradigm is based on maximizing drug-receptor occupancy to achieve clinical benefit. This strategy, however, generally requires excessive drug concentrations to ensure sufficient occupancy, often leading to adverse side effects. Here, we describe major improvements to the proteolysis targeting chimeras (PROTACs) method, a chemical knockdown strategy in which a heterobifunctional molecule recruits a specific protein target to an E3 ubiquitin ligase, resulting in the target's ubiquitination and degradation. These compounds behave catalytically in their ability to induce the ubiquitination of super-stoichiometric quantities of proteins, providing efficacy that is not limited by equilibrium occupancy. We present two PROTACs that are capable of specifically reducing protein levels by >90% at nanomolar concentrations. In addition, mouse studies indicate that they provide broad tissue distribution and knockdown of the targeted protein in tumor xenografts. Together, these data demonstrate a protein knockdown system combining many of the favorable properties of small-molecule agents with the potent protein knockdown of RNAi and CRISPR.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Proteínas de Neoplasias/antagonistas & inibidores , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/antagonistas & inibidores , Receptores de Estrogênio/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Sítios de Ligação , Biocatálise , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Humanos , Células MCF-7 , Camundongos , Modelos Moleculares , Terapia de Alvo Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Transplante de Neoplasias , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteólise , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinação , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Receptor ERRalfa Relacionado ao Estrogênio
20.
J Biol Chem ; 290(17): 10657-66, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25750128

RESUMO

Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein complexes play essential roles in catalyzing intracellular membrane fusion events although the assembly pathway and molecular arrangement of SNARE complexes in membrane fusion reactions are not well understood. Here we monitored interactions of the R-SNARE protein Sec22 through a cysteine scanning approach and detected efficient formation of cross-linked Sec22 homodimers in cellular membranes when cysteine residues were positioned in the SNARE motif or C terminus of the transmembrane domain. When specific Sec22 cysteine derivatives are present on both donor COPII vesicles and acceptor Golgi membranes, the formation of disulfide cross-links provide clear readouts on trans- and cis-SNARE arrangements during this fusion event. The Sec22 transmembrane domain was required for efficient homodimer formation and for membrane fusion suggesting a functional role for Sec22 homodimers. We propose that Sec22 homodimers promote assembly of higher-order SNARE complexes to catalyze membrane fusion. Sec22 is also reported to function in macroautophagy and in formation of endoplasmic reticulum-plasma membrane contact sites therefore homodimer assembly may regulate Sec22 activity across a range of cellular processes.


Assuntos
Fusão de Membrana/fisiologia , Proteínas R-SNARE/química , Proteínas R-SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Substituição de Aminoácidos , Cisteína/química , Fusão de Membrana/genética , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutagênese Sítio-Dirigida , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Quaternária de Proteína , Proteínas Qb-SNARE/química , Proteínas Qb-SNARE/genética , Proteínas Qb-SNARE/metabolismo , Proteínas R-SNARE/genética , Proteínas SNARE/química , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA