RESUMO
PURPOSE: Stimulation of effector T cells is an appealing immunotherapeutic approach in oncology. OX40 (CD134) is a costimulatory receptor expressed on activated CD4+ and CD8+ T cells. Induction of OX40 following antigen recognition results in enhanced T-cell activation, proliferation, and survival, and OX40 targeting shows therapeutic efficacy in preclinical studies. We report the monotherapy dose-escalation portion of a multicenter, phase I trial (NCT02315066) of ivuxolimab (PF-04518600), a fully human immunoglobulin G2 agonistic monoclonal antibody specific for human OX40. PATIENTS AND METHODS: Adult patients (N = 52) with selected locally advanced or metastatic cancers received ivuxolimab 0.01 to 10 mg/kg. Primary endpoints were safety and tolerability. Secondary/exploratory endpoints included preliminary assessment of antitumor activity and biomarker analyses. RESULTS: The most common all-causality adverse events were fatigue (46.2%), nausea (28.8%), and decreased appetite (25.0%). Of 31 treatment-related adverse events, 30 (96.8%) were grade ≤2. No dose-limiting toxicities occurred. Ivuxolimab exposure increased in a dose-proportionate manner from 0.3 to 10 mg/kg. Full peripheral blood target engagement occurred at ≥0.3 mg/kg. Three (5.8%) patients achieved a partial response, and disease control was achieved in 56% of patients. Increased CD4+ central memory T-cell proliferation and activation, and clonal expansion of CD4+ and CD8+ T cells in peripheral blood were observed at 0.1 to 3.0 mg/kg. Increased immune cell infiltrate and OX40 expression were evident in on-treatment tumor biopsies. CONCLUSIONS: Ivuxolimab was generally well tolerated with on-target immune activation at clinically relevant doses, showed preliminary antitumor activity, and may serve as a partner for combination studies.
Assuntos
Antineoplásicos , Neoplasias , Anticorpos Monoclonais/efeitos adversos , Antineoplásicos/uso terapêutico , Linfócitos T CD8-Positivos , Humanos , Náusea , Neoplasias/tratamento farmacológicoRESUMO
The immunologic landscape of the host and tumor play key roles in determining how patients will benefit from immunotherapy, and a better understanding of these factors could help inform how well a tumor responds to treatment. Recent advances in immunotherapy and in our understanding of the immune system have revolutionized the treatment landscape for many advanced cancers. Notably, the use of immune checkpoint inhibitors has demonstrated durable responses in various malignancies. However, the response to such treatments is variable and currently unpredictable, the availability of predictive biomarkers is limited, and a substantial proportion of patients do not respond to immune checkpoint therapy. Identification and investigation of potential biomarkers that may predict sensitivity to immunotherapy is an area of active research. It is envisaged that a deeper understanding of immunity will aid in harnessing the full potential of immunotherapy, and allow appropriate patients to receive the most appropriate treatments. In addition to the identification of new biomarkers, the platforms and assays required to accurately and reproducibly measure biomarkers play a key role in ensuring consistency of measurement both within and between patients. In this review we discuss the current knowledge in the area of peripheral immune-based biomarkers, drawing information from the results of recent clinical studies of a number of different immunotherapy modalities in the treatment of cancer, including checkpoint inhibitors, bispecific antibodies, chimeric antigen receptor T cells, and anti-cancer vaccines. We also discuss the various technologies and approaches used in detecting and measuring circulatory biomarkers and the ongoing need for harmonization.
Assuntos
Biomarcadores Tumorais , Imunidade , Imunoterapia , Terapia de Alvo Molecular , Neoplasias/etiologia , Neoplasias/terapia , Animais , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Humanos , Imunoterapia Adotiva , Neoplasias/metabolismo , Neoplasias/patologia , Resultado do Tratamento , Microambiente Tumoral/genética , Microambiente Tumoral/imunologiaRESUMO
Current clinical anti-CD40 biologic agents include both antagonist molecules for the treatment of autoimmune diseases and agonist molecules for immuno-oncology, yet the relationship between CD40 epitope and these opposing biological outcomes is not well defined. This report describes the identification of potent antagonist domain antibodies (dAbs) that bind to a novel human CD40-specific epitope that is divergent in the CD40 of nonhuman primates. A similarly selected anti-cynomolgus CD40 dAb recognizing the homologous epitope is also a potent antagonist. Mutagenesis, biochemical, and X-ray crystallography studies demonstrate that the epitope is distinct from that of CD40 agonists. Both the human-specific and cynomolgus-specific molecules remain pure antagonists even when formatted as bivalent Fc-fusion proteins, making this an attractive therapeutic format for targeting hCD40 in autoimmune indications.
Assuntos
Antígenos CD40/imunologia , Epitopos/imunologia , Animais , Doenças Autoimunes/imunologia , Cristalografia por Raios X/métodos , Humanos , Macaca fascicularisRESUMO
A series of novel small molecule inhibitors of inosine monophosphate dehydrogenase (IMPDH), based upon a 3-cyanoindole core, were explored. IMPDH catalyzes the rate determining step in guanine nucleotide biosynthesis and is a target for anticancer, immunosuppressive and antiviral therapy. The synthesis and the structure-activity relationships (SAR), derived from in vitro studies, for this new series of inhibitors is given.
Assuntos
Inibidores Enzimáticos/farmacologia , IMP Desidrogenase/antagonistas & inibidores , Indóis/farmacologia , Catálise , Cinética , Relação Estrutura-AtividadeRESUMO
A modified approach to the synthesis of 3-(oxazolyl-5-yl) indoles is reported. This method was applied to the synthesis of series of novel indole based inhibitors of inosine monophosphate dehydrogenase (IMPDH). The synthesis and the structure-activity relationships (SARs), derived from in vitro studies, for this new series of inhibitors is given.
Assuntos
IMP Desidrogenase/antagonistas & inibidores , Indóis/farmacologia , Sítios de Ligação , Cianetos/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Humanos , Indóis/síntese química , Ativação Linfocitária/efeitos dos fármacos , Relação Estrutura-Atividade , Linfócitos T/efeitos dos fármacos , Células Tumorais CultivadasRESUMO
A series of novel guanidine-based small molecule inhibitors of inosine monophosphate dehydrogenase (IMPDH) was explored. IMPDH catalyzes the rate determining step in guanine nucleotide biosynthesis and is a target for anticancer, immunosuppressive and antiviral therapy. The synthesis and the structure-activity relationships (SARs), derived from in vitro studies, for this new series of inhibitors is given.