Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
BMC Pediatr ; 24(1): 249, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605404

RESUMO

BACKGROUND: Long-term survival after premature birth is significantly determined by development of morbidities, primarily affecting the cardio-respiratory or central nervous system. Existing studies are limited to pairwise morbidity associations, thereby lacking a holistic understanding of morbidity co-occurrence and respective risk profiles. METHODS: Our study, for the first time, aimed at delineating and characterizing morbidity profiles at near-term age and investigated the most prevalent morbidities in preterm infants: bronchopulmonary dysplasia (BPD), pulmonary hypertension (PH), mild cardiac defects, perinatal brain pathology and retinopathy of prematurity (ROP). For analysis, we employed two independent, prospective cohorts, comprising a total of 530 very preterm infants: AIRR ("Attention to Infants at Respiratory Risks") and NEuroSIS ("Neonatal European Study of Inhaled Steroids"). Using a data-driven strategy, we successfully characterized morbidity profiles of preterm infants in a stepwise approach and (1) quantified pairwise morbidity correlations, (2) assessed the discriminatory power of BPD (complemented by imaging-based structural and functional lung phenotyping) in relation to these morbidities, (3) investigated collective co-occurrence patterns, and (4) identified infant subgroups who share similar morbidity profiles using machine learning techniques. RESULTS: First, we showed that, in line with pathophysiologic understanding, BPD and ROP have the highest pairwise correlation, followed by BPD and PH as well as BPD and mild cardiac defects. Second, we revealed that BPD exhibits only limited capacity in discriminating morbidity occurrence, despite its prevalence and clinical indication as a driver of comorbidities. Further, we demonstrated that structural and functional lung phenotyping did not exhibit higher association with morbidity severity than BPD. Lastly, we identified patient clusters that share similar morbidity patterns using machine learning in AIRR (n=6 clusters) and NEuroSIS (n=8 clusters). CONCLUSIONS: By capturing correlations as well as more complex morbidity relations, we provided a comprehensive characterization of morbidity profiles at discharge, linked to shared disease pathophysiology. Future studies could benefit from identifying risk profiles to thereby develop personalized monitoring strategies. TRIAL REGISTRATION: AIRR: DRKS.de, DRKS00004600, 28/01/2013. NEuroSIS: ClinicalTrials.gov, NCT01035190, 18/12/2009.


Assuntos
Displasia Broncopulmonar , Doenças do Prematuro , Retinopatia da Prematuridade , Feminino , Humanos , Recém-Nascido , Gravidez , Displasia Broncopulmonar/complicações , Idade Gestacional , Recém-Nascido Prematuro , Doenças do Prematuro/epidemiologia , Recém-Nascido de muito Baixo Peso , Morbidade , Estudos Prospectivos , Retinopatia da Prematuridade/epidemiologia , População Europeia
2.
Radiol Artif Intell ; 5(6): e220239, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38074782

RESUMO

Purpose: To analyze the performance of deep learning (DL) models for segmentation of the neonatal lung in MRI and investigate the use of automated MRI-based features for assessment of neonatal lung disease. Materials and Methods: Quiet-breathing MRI was prospectively performed in two independent cohorts of preterm infants (median gestational age, 26.57 weeks; IQR, 25.3-28.6 weeks; 55 female and 48 male infants) with (n = 86) and without (n = 21) chronic lung disease (bronchopulmonary dysplasia [BPD]). Convolutional neural networks were developed for lung segmentation, and a three-dimensional reconstruction was used to calculate MRI features for lung volume, shape, pixel intensity, and surface. These features were explored as indicators of BPD and disease-associated lung structural remodeling through correlation with lung injury scores and multinomial models for BPD severity stratification. Results: The lung segmentation model reached a volumetric Dice coefficient of 0.908 in cross-validation and 0.880 on the independent test dataset, matching expert-level performance across disease grades. MRI lung features demonstrated significant correlations with lung injury scores and added structural information for the separation of neonates with BPD (BPD vs no BPD: average area under the receiver operating characteristic curve [AUC], 0.92 ± 0.02 [SD]; no or mild BPD vs moderate or severe BPD: average AUC, 0.84 ± 0.03). Conclusion: This study demonstrated high performance of DL models for MRI neonatal lung segmentation and showed the potential of automated MRI features for diagnostic assessment of neonatal lung disease while avoiding radiation exposure.Keywords: Bronchopulmonary Dysplasia, Chronic Lung Disease, Preterm Infant, Lung Segmentation, Lung MRI, BPD Severity Assessment, Deep Learning, Lung Imaging Biomarkers, Lung Topology Supplemental material is available for this article. Published under a CC BY 4.0 license.See also the commentary by Parraga and Sharma in this issue.

3.
Pulm Circ ; 13(4): e12320, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38144949

RESUMO

Pulmonary hypertension (PH) is the most severe complication in preterm infants with bronchopulmonary dysplasia (BPD) and associated with significant mortality. Diagnostic and treatment strategies, however, still lack standardization. By the use of a survey study (PH in BPD), we assessed clinical practice (diagnosis, treatment, follow-up) in preterm infants with early postnatal persistent pulmonary hypertension of the newborn (PPHN) as well as at risk for or with established BPD-associated PH between 06/2018 and 10/2020 in two-thirds of all German perinatal centers with >70 very low birthweight infants/year including their cardiology departments and outpatient units. Data were analyzed descriptively by measures of locations and distributional shares. In routine postnatal care, clinical presentation and echocardiography were reported as the main diagnostic modalities to screen for PPHN in preterm infants, whereas biomarkers brain natriuretic peptide/N-terminal pro b-type natriuretic peptide were infrequently used. For PPHN treatment, inhaled nitric oxide was used in varying frequency. The majority of participants agreed to prescribe diuretics and steroids (systemic/inhaled) for infants at risk for or with established BPD-associated PH and strongly agreed on recommending respiratory syncytial virus immunization and the use of home monitoring upon discharge. Reported oxygen saturation targets, however, varied in these patients in in- and outpatient care. The survey reveals shared practices in diagnostic and therapeutic strategies for preterms with PPHN and BPD-associated PH in Germany. Future studies are needed to agree on detailed echo parameters and biomarkers to diagnose and monitor disease next to a much-needed agreement on the use of pulmonary vasodilators, steroids, and diuretics as well as target oxygen saturation levels.

4.
Eur Respir J ; 62(6)2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37678954

RESUMO

BACKGROUND: Pulmonary vascular disease (PVD) affects the majority of preterm neonates with bronchopulmonary dysplasia (BPD) and significantly determines long-term mortality through undetected progression into pulmonary hypertension. Our objectives were to associate characteristics of pulmonary artery (PA) flow and cardiac function with BPD-associated PVD near term using advanced magnetic resonance imaging (MRI) for improved risk stratification. METHODS: Preterms <32 weeks postmenstrual age (PMA) with/without BPD were clinically monitored including standard echocardiography and prospectively enrolled for 3 T MRI in spontaneous sleep near term (AIRR (Attention to Infants at Respiratory Risks) study). Semi-manual PA flow quantification (phase-contrast MRI; no BPD n=28, mild BPD n=35 and moderate/severe BPD n=25) was complemented by cardiac function assessment (cine MRI). RESULTS: We identified abnormalities in PA flow and cardiac function, i.e. increased net forward volume right/left ratio, decreased mean relative area change and pathological right end-diastolic volume, to sensitively detect BPD-associated PVD while correcting for PMA (leave-one-out area under the curve 0.88, sensitivity 0.80 and specificity 0.81). We linked these changes to increased right ventricular (RV) afterload (RV-arterial coupling (p=0.02), PA mid-systolic notching (t2; p=0.015) and cardiac index (p=1.67×10-8)) and correlated echocardiographic findings. Identified in moderate/severe BPD, we successfully applied the PA flow model in heterogeneous mild BPD cases, demonstrating strong correlation of PVD probability with indicators of BPD severity, i.e. duration of mechanical ventilation (rs=0.63, p=2.20×10-4) and oxygen supplementation (rs=0.60, p=6.00×10-4). CONCLUSIONS: Abnormalities in MRI PA flow and cardiac function exhibit significant, synergistic potential to detect BPD-associated PVD, advancing the possibilities of risk-adapted monitoring.


Assuntos
Displasia Broncopulmonar , Hipertensão Pulmonar , Doenças Vasculares , Recém-Nascido , Lactente , Humanos , Artéria Pulmonar/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Displasia Broncopulmonar/diagnóstico por imagem , Imageamento por Ressonância Magnética , Doenças Vasculares/complicações
6.
Front Immunol ; 14: 1112608, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37090732

RESUMO

Introduction: Inflammation is a key driver of morbidity in the vulnerable preterm infant exposed to pre- and postnatal hazards and significantly contributes to chronic lung disease, i.e. bronchopulmonary dysplasia (BPD). However, the early changes in innate immunity associated with BPD development are incompletely understood. Methods: In very immature preterm infants below 32 weeks gestational age (GA; n=30 infants), monocyte subtypes were identified by Flow Cytometry at birth and throughout the postnatal course including intracellular TNF expression upon LPS stimulation. Complementing these measurements, cytokine end growth factor expression profiles (Luminex® xMAP®; n=110 infants) as well as gene expression profiles (CodeLinkTM Human I Bioarray; n=22) were characterized at birth. Results: The abundance of monocyte subtypes differed between preterm and term neonates at birth. Specifically, CD14++CD16+ (intermediate) monocytes demonstrated a dependency on PMA and elevated levels of nonclassical (CD14+CD16++) monocytes characterized preterm infants with developing BPD. Postnatally, lung injury was associated with an increase in intermediate monocytes, while high levels of nonclassical monocytes persisted. Both subtypes were revealed as the main source of intracellular TNF-α expression in the preterm infant. We identified a cytokine and growth factor expression profile in cord blood specimen of preterm infants with developing BPD that corresponded to the disease-dependent regulation of monocyte abundances. Multivariate modeling of protein profiles revealed FGF2, sIL-2 Rα, MCP-1, MIP1a, and TNF-α as predictors of BPD when considering GA. Transcriptome analysis demonstrated genes predicting BPD to be overrepresented in inflammatory pathways with increased disease severity characterized by the regulation of immune and defense response pathways and upstream regulator analysis confirmed TNF-α, interleukin (IL) -6, and interferon α as the highest activated cytokines in more severe disease. Whereas all BPD cases showed downstream activation of chemotaxis and activation of inflammatory response pathways, more severe cases were characterized by an additional activation of reactive oxygen species (ROS) synthesis. Discussion: In the present study, we identified the early postnatal presence of nonclassical (CD14+CD16++) and intermediate (CD14++CD16+) monocytes as a critical characteristic of BPD development including a specific response pattern of monocyte subtypes to lung injury. Pathophysiological insight was provided by the protein and transcriptome signature identified at birth, centered around monocyte and corresponding granulocyte activation and highlighting TNFα as a critical regulator in infants with developing BPD. The disease severity-dependent expression patterns could inform future diagnostic and treatment strategies targeting the monocytic cell and its progeny.


Assuntos
Displasia Broncopulmonar , Doenças do Recém-Nascido , Lesão Pulmonar , Lactente , Recém-Nascido , Humanos , Recém-Nascido Prematuro , Monócitos , Fator de Necrose Tumoral alfa/genética , Displasia Broncopulmonar/genética , Citocinas , Interleucina-6
7.
Pediatr Res ; 93(3): 625-632, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35595912

RESUMO

OBJECTIVE: To demonstrate and validate the improvement of current risk stratification for bronchopulmonary dysplasia (BPD) early after birth by plasma protein markers (sialic acid-binding Ig-like lectin 14 (SIGLEC-14), basal cell adhesion molecule (BCAM), angiopoietin-like 3 protein (ANGPTL-3)) in extremely premature infants. METHODS AND RESULTS: Proteome screening in first-week-of-life plasma samples of n = 52 preterm infants <32 weeks gestational age (GA) on two proteomic platforms (SomaLogic®, Olink-Proteomics®) confirmed three biomarkers with significant predictive power: BCAM, SIGLEC-14, and ANGPTL-3. We demonstrate high sensitivity (0.92) and specificity (0.86) under consideration of GA, show the proteins' critical contribution to the predictive power of known clinical risk factors, e.g., birth weight and GA, and predicted the duration of mechanical ventilation, oxygen supplementation, as well as neonatal intensive care stay. We confirmed significant predictive power for BPD cases when switching to a clinically applicable method (enzyme-linked immunosorbent assay) in an independent sample set (n = 25, p < 0.001) and demonstrated disease specificity in different cohorts of neonatal and adult lung disease. CONCLUSION: While successfully addressing typical challenges of clinical biomarker studies, we demonstrated the potential of BCAM, SIGLEC-14, and ANGPTL-3 to inform future clinical decision making in the preterm infant at risk for BPD. TRIAL REGISTRATION: Deutsches Register Klinische Studien (DRKS) No. 00004600; https://www.drks.de . IMPACT: The urgent need for biomarkers that enable early decision making and personalized monitoring strategies in preterm infants with BPD is challenged by targeted marker analyses, cohort size, and disease heterogeneity. We demonstrate the potential of the plasma proteins BCAM, SIGLEC-14, and ANGPTL-3 to identify infants with BPD early after birth while improving the predictive power of clinical variables, confirming the robustness toward proteome assays and proving disease specificity. Our comprehensive analysis enables a phase-III clinical trial that allows full implementation of the biomarkers into clinical routine to enable early risk stratification in preterms with BPD.


Assuntos
Displasia Broncopulmonar , Lactente , Recém-Nascido , Humanos , Displasia Broncopulmonar/prevenção & controle , Proteoma , Proteômica , Idade Gestacional , Lactente Extremamente Prematuro , Biomarcadores
8.
Am J Physiol Lung Cell Mol Physiol ; 324(2): L114-L122, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36410026

RESUMO

Neonatal chronic lung disease lacks standardized assessment of lung structural changes. We addressed this clinical need by the development of a novel scoring system [UNSEAL BPD (UNiforme Scoring of the disEAsed Lung in BPD)] using T2-weighted single-shot fast-spin-echo sequences from 3 T MRI in very premature infants with and without bronchopulmonary dysplasia (BPD). Quantification of interstitial and airway remodeling, emphysematous changes, and ventilation inhomogeneity was achieved by consensus scoring on a five-point Likert scale. We successfully identified moderate and severe disease by logistic regression [area under the curve (AUC), 0.89] complemented by classification tree analysis revealing gestational age-specific structural changes. We demonstrated substantial interreader reproducibility (weighted Cohen's κ 0.69) and disease specificity (AUC = 0.91). Our novel MRI score enables the standardized assessment of disease-characteristic structural changes in the preterm lung exhibiting significant potential as a quantifiable endpoint in early intervention clinical trials and long-term disease monitoring.


Assuntos
Displasia Broncopulmonar , Recém-Nascido Prematuro , Lactente , Humanos , Recém-Nascido , Displasia Broncopulmonar/diagnóstico por imagem , Displasia Broncopulmonar/patologia , Reprodutibilidade dos Testes , Pulmão/diagnóstico por imagem , Pulmão/patologia , Idade Gestacional , Imageamento por Ressonância Magnética
9.
Zentralbl Chir ; 148(3): 284-292, 2023 Jun.
Artigo em Alemão | MEDLINE | ID: mdl-36167311

RESUMO

In recent years, the use of mechanical support for patients with cardiac or circulatory failure has continuously increased, leading to 3,000 ECLS/ECMO (extracorporeal life support/extracorporeal membrane oxygenation) implantations annually in Germany. Due to the lack of guidelines, there is an urgent need for evidence-based recommendations addressing the central aspects of ECLS/ECMO therapy. In July 2015, the generation of a guideline level S3 according to the standards of the Association of the Scientific Medical Societies in Germany (AWMF) was announced by the German Society for Thoracic and Cardiovascular Surgery (GSTCVS). In a well-structured consensus process, involving experts from Germany, Austria and Switzerland, delegated by 16 scientific societies and the patients' representation, the guideline "Use of extracorporeal circulation (ECLS/ECMO) for cardiac and circulatory failure" was created under guidance of the GSTCVS, and published in February 2021. The guideline focuses on clinical aspects of initiation, continuation, weaning and aftercare, herein also addressing structural and economic issues. This article presents an overview on the methodology as well as the final recommendations.


Assuntos
Oxigenação por Membrana Extracorpórea , Choque , Humanos , Sociedades Científicas , Circulação Extracorpórea , Sociedades Médicas , Alemanha
10.
Front Pediatr ; 11: 1329404, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239591

RESUMO

Introduction: Persistent pulmonary hypertension of the newborn (PPHN) is a life-threatening condition characterized by hypoxemia due to elevated pulmonary vascular resistance. PPHN commonly arises secondary to various underlying conditions, including infection, meconium aspiration, and respiratory distress syndrome. Management includes pulmonary vasodilators, mechanical ventilation, oxygen supplementation, vasopressors, and volume replacement. Stüve-Wiedemann syndrome (SWS), a rare genetic disorder characterized by bone dysplasia, respiratory distress, hyperthermia, and swallowing difficulties, may present with pulmonary hypertension, indicating a poor prognosis. Case description: A term female neonate presented with secondary respiratory failure and severe PPHN of unknown etiology on the second day of life, necessitating intubation. Clinical findings included facial dysmorphia, camptodactyly, skeletal anomalies, and generalized muscular hypotonia. High-frequency oscillation ventilation and surfactant administration yielded marginal improvement. On the third day of life, a severe pulmonary hypertensive crisis necessitated inhaled and systemic pulmonary vasodilators along with volume and catecholamine therapy. Whole exome sequencing revealed a homozygous mutation in the leukemia inhibitory factor receptor (LIFR) gene, consistent with Stüve-Wiedemann syndrome. Discussion/conclusion: The case underscores the importance of considering and prompting evaluation of rare genetic causes in the differential diagnosis of PPHN, especially when other abnormalities are present and conventional therapies prove inadequate. Therapeutic strategies must account for the different pathophysiology of primary PPHN including vascular remodeling, as seen in SWS, which may not respond to pulmonary vasodilators typically employed in secondary PPHN due to vasoconstriction. In this case, the patient responded well to treatment for primary PPHN, but the use of high-frequency oscillation ventilation and surfactant was not helpful.

11.
Thorax ; 77(12): 1176-1186, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35580897

RESUMO

INTRODUCTION: Chronic lung disease, that is, bronchopulmonary dysplasia (BPD) is the most common complication in preterm infants and develops as a consequence of the misguided formation of the gas-exchange area undergoing prenatal and postnatal injury. Subsequent vascular disease and its progression into pulmonary arterial hypertension critically determines long-term outcome in the BPD infant but lacks identification of early, disease-defining changes. METHODS: We link impaired bone morphogenetic protein (BMP) signalling to the earliest onset of vascular pathology in the human preterm lung and delineate the specific effects of the most prevalent prenatal and postnatal clinical risk factors for lung injury mimicking clinically relevant conditions in a multilayered animal model using wild-type and transgenic neonatal mice. RESULTS: We demonstrate (1) the significant reduction in BMP receptor 2 (BMPR2) expression at the onset of vascular pathology in the lung of preterm infants, later mirrored by reduced plasma BMP protein levels in infants with developing BPD, (2) the rapid impairment (and persistent change) of BMPR2 signalling on postnatal exposure to hyperoxia and mechanical ventilation, aggravated by prenatal cigarette smoke in a preclinical mouse model and (3) a link to defective alveolar septation and matrix remodelling through platelet derived growth factor-receptor alpha deficiency. In a treatment approach, we partially reversed vascular pathology by BMPR2-targeted treatment with FK506 in vitro and in vivo. CONCLUSION: We identified impaired BMP signalling as a hallmark of early vascular disease in the injured neonatal lung while outlining its promising potential as a future biomarker or therapeutic target in this growing, high-risk patient population.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Lesões do Sistema Vascular , Lactente , Recém-Nascido , Humanos , Camundongos , Animais , Recém-Nascido Prematuro , Lesões do Sistema Vascular/complicações , Lesões do Sistema Vascular/patologia , Displasia Broncopulmonar/etiologia , Hiperóxia/complicações , Hiperóxia/metabolismo , Hiperóxia/patologia , Pulmão , Camundongos Transgênicos , Fatores de Risco , Animais Recém-Nascidos
12.
Anaesthesist ; 70(11): 942-950, 2021 11.
Artigo em Alemão | MEDLINE | ID: mdl-34665266

RESUMO

In Germany, a remarkable increase regarding the usage of extracorporeal membrane oxygenation (ECMO) and extracorporeal life support (ECLS) systems has been observed in recent years with approximately 3000 ECLS/ECMO implantations annually since 2015. Despite the widespread use of ECLS/ECMO, evidence-based recommendations or guidelines are still lacking regarding indications, contraindications, limitations and management of ECMO/ECLS patients. Therefore in 2015, the German Society of Thoracic and Cardiovascular Surgery (GSTCVS) registered the multidisciplinary S3 guideline "Use of extracorporeal circulation (ECLS/ECMO) for cardiac and circulatory failure" to develop evidence-based recommendations for ECMO/ECLS systems according to the requirements of the Association of the Scientific Medical Societies in Germany (AWMF). Although the clinical application of ECMO/ECLS represents the main focus, the presented guideline also addresses structural and economic issues. Experts from 17 German, Austrian and Swiss scientific societies and a patients' organization, guided by the GSTCVS, completed the project in February 2021. In this report, we present a summary of the methodological concept and tables displaying the recommendations for each chapter of the guideline.


Assuntos
Oxigenação por Membrana Extracorpórea , Choque , Circulação Extracorpórea , Alemanha , Humanos , Sistemas de Manutenção da Vida
13.
Med Klin Intensivmed Notfmed ; 116(8): 678-686, 2021 Nov.
Artigo em Alemão | MEDLINE | ID: mdl-34665281

RESUMO

In Germany, a remarkable increase regarding the usage of extracorporeal membrane oxygenation (ECMO) and extracorporeal life support (ECLS) systems has been observed in recent years with approximately 3000 ECLS/ECMO implantations annually since 2015. Despite the widespread use of ECLS/ECMO, evidence-based recommendations or guidelines are still lacking regarding indications, contraindications, limitations and management of ECMO/ECLS patients. Therefore in 2015, the German Society of Thoracic and Cardiovascular Surgery (GSTCVS) registered the multidisciplinary S3 guideline "Use of extracorporeal circulation (ECLS/ECMO) for cardiac and circulatory failure" to develop evidence-based recommendations for ECMO/ECLS systems according to the requirements of the Association of the Scientific Medical Societies in Germany (AWMF). Although the clinical application of ECMO/ECLS represents the main focus, the presented guideline also addresses structural and economic issues. Experts from 17 German, Austrian and Swiss scientific societies and a patients' organization, guided by the GSTCVS, completed the project in February 2021. In this report, we present a summary of the methodological concept and tables displaying the recommendations for each chapter of the guideline.


Assuntos
Oxigenação por Membrana Extracorpórea , Choque , Circulação Extracorpórea , Alemanha , Humanos , Sistemas de Manutenção da Vida
14.
Pediatr Pulmonol ; 56(12): 3839-3846, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34432956

RESUMO

OBJECTIVE: Despite the routine use of antenatal steroids, exogenous surfactants, and different noninvasive ventilation methods, many extremely low gestational age neonates, preterm, and term infants eventually require invasive ventilation. In addition to prematurity, mechanical ventilation itself can induce ventilator-induced lung injury leading to lifelong pulmonary sequelae. Besides conventional mechanical ventilation, high-frequency oscillatory ventilation (HFOV) with tidal volumes below dead space and high ventilation frequencies is used either as a primary or rescue therapy in severe neonatal respiratory failure. METHODS AND RESULTS: Applying a high-resolution computational lung modeling technique in a preterm infant, we studied three different high-frequency ventilation settings as well as conventional ventilation (CV) settings. Evaluating the computed oxygen delivery (OD) and lung mechanics (LM) we outline for the first time how changing ventilator settings from CV to HFOV lead to significant improvements in OD and LM. CONCLUSION: This personalized "digital twin" strategy advances our general knowledge of protective ventilation strategies in neonatal care and can support decisions on various modes of ventilatory therapy at high frequencies.


Assuntos
Ventilação de Alta Frequência , Pneumopatias , Síndrome do Desconforto Respiratório do Recém-Nascido , Feminino , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Gravidez , Respiração Artificial , Síndrome do Desconforto Respiratório do Recém-Nascido/terapia , Ventiladores Mecânicos
15.
Thorax ; 75(2): 184-187, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31048507

RESUMO

We developed a MRI protocol using transverse (T2) and longitudinal (T1) mapping sequences to characterise lung structural changes in preterm infants with bronchopulmonary dysplasia (BPD). We prospectively enrolled 61 infants to perform 3-Tesla MRI of the lung in quiet sleep. Statistical analysis was performed using logistic Group Lasso regression and logistic regression. Increased lung T2 relaxation time and decreased lung T1 relaxation time indicated BPD yielding an area under the curve (AUC) of 0.80. Results were confirmed in an independent study cohort (AUC 0.75) and mirrored by lung function testing, indicating the high potential for MRI in future BPD diagnostics. TRIAL REGISTRATION: DRKS00004600.


Assuntos
Displasia Broncopulmonar/diagnóstico por imagem , Displasia Broncopulmonar/fisiopatologia , Interpretação de Imagem Assistida por Computador , Imageamento Tridimensional , Recém-Nascido Prematuro , Imageamento por Ressonância Magnética/métodos , Área Sob a Curva , Estudos de Coortes , Feminino , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Modelos Logísticos , Masculino , Estudos Prospectivos , Índice de Gravidade de Doença
16.
Sci Rep ; 8(1): 13008, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30158557

RESUMO

High-frequency oscillatory ventilation (HFOV) is a commonly used therapy applied to neonates requiring ventilatory support during their first weeks of life. Despite its wide application, the underlying gas exchange mechanisms promoting the success of HVOF in neonatal care are not fully understood until today. In this work, a highly resolved computational lung model, derived from Magnetic Resonance Imaging (MRI) and Infant Lung Function Testing (ILFT), is used to reveal the reason for highly efficient gas exchange during HFOV, in the preterm infant. In total we detected six mechanisms that facilitate gas exchange during HFOV: (i) turbulent vortices in large airways; (ii) asymmetric in- and expiratory flow profiles; (iii) radial mixing in main bronchi; (iv) laminar flow in higher generations of the respiratory tract; (v) pendelluft; (vi) direct ventilation of central alveoli. The illustration of six specific gas transport phenomena during HFOV in preterm infants advances general knowledge on protective ventilation in neonatal care and can support decisions on various modes of ventilatory therapy at high frequencies.


Assuntos
Simulação por Computador , Ventilação de Alta Frequência , Recém-Nascido Prematuro , Pulmão/crescimento & desenvolvimento , Pulmão/fisiologia , Troca Gasosa Pulmonar , Humanos , Lactente , Recém-Nascido , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Testes de Função Respiratória
18.
Pediatr Res ; 82(3): 536-543, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28399114

RESUMO

BackgroundA congenital diaphragmatic hernia (DH) can result in severe lung hypoplasia that increases the risk of morbidity and mortality after birth; however, little is known about the cardiorespiratory transition at birth.MethodsUsing phase-contrast X-ray imaging and angiography, we examined the cardiorespiratory transition at birth in rabbit kittens with DHs. Surgery was performed on pregnant New Zealand white rabbits (n=18) at 25 days' gestation to induce a left-sided DH. Kittens were delivered at 30 days' gestation, intubated, and ventilated to achieve a tidal volume (Vt) of 8 ml/kg in control and 4 ml/kg in DH kittens while they were imaged.ResultsFunctional residual capacity (FRC) recruitment and Vt in the hypoplastic left lung were markedly reduced, resulting in a disproportionate distribution of FRC into the right lung. Following lung aeration, relative pulmonary blood flow (PBF) increased equally in both lungs, and the increase in pulmonary venous return was similar in both control and DH kittens.ConclusionThese findings indicate that nonuniform lung hypoplasia caused by DH alters the distribution of ventilation away from hypoplastic and into normally grown lung regions. During transition, the increase in PBF and pulmonary venous return, which is vital for maintaining cardiac output, is not affected by lung hypoplasia.


Assuntos
Hérnias Diafragmáticas Congênitas/fisiopatologia , Pulmão/irrigação sanguínea , Ventilação Pulmonar , Animais , Animais Recém-Nascidos , Feminino , Hérnias Diafragmáticas Congênitas/diagnóstico por imagem , Hérnias Diafragmáticas Congênitas/patologia , Gravidez , Coelhos , Fluxo Sanguíneo Regional , Volume de Ventilação Pulmonar
19.
Pediatr Crit Care Med ; 15(9): e379-88, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25370070

RESUMO

OBJECTIVES: Fetal tracheal occlusion of hypoplastic rabbit lungs results in lung growth and alveolarization although the surfactant protein messenger RNA expression is decreased and the transforming growth factor-ß pathway induced. The prenatal filling of healthy rabbit lungs with perfluorooctylbromide augments lung growth without suppression of surfactant protein synthesis. We hypothesizes that Intratracheal perfluorooctylbromide instillation improves lung growth, mechanics, and extracellular matrix synthesis in a fetal rabbit model of lung hypoplasia induced by diaphragmatic hernia. SETTING AND INTERVENTIONS: On day 23 of gestation, DH was induced by fetal surgery in healthy rabbit fetuses. Five days later, 0.8ml of perfluorooctylbromide (diaphragmatic hernia-perfluorooctylbromide) or saline (diaphragmatic hernia-saline) was randomly administered into the lungs of previously operated fetuses. After term delivery (day 31), lung mechanics, lung to body weight ratio, messenger RNA levels of target genes, assessment of lung histology, and morphological distribution of elastin and collagen were determined. Nonoperated fetuses served as controls. MEASUREMENTS AND MAIN RESULTS: Fetal instillation of perfluorooctylbromide in hypoplastic lungs resulted in an improvement of lung-to-body weight ratio (0.016 vs 0.013 g/g; p = 0.05), total lung capacity (23.4 vs 15.4 µL/g; p = 0.03), and compliance (2.4 vs 1.2 mL/cm H2O; p = 0.007) as compared to diaphragmatic hernia-saline. In accordance with the results from lung function analysis, elastin staining of pulmonary tissue revealed a physiological distribution of elastic fiber to the tips of the secondary crests in the diaphragmatic hernia-perfluorooctylbromide group. Likewise, messenger RNA expression was induced in genes associated with extracellular matrix remodeling (matrix metalloproteinase-2, tissue inhibitor of metalloproteinase-1, and tissue inhibitor of metalloproteinase-2). Surfactant protein expression was similar in the diaphragmatic hernia-perfluorooctylbromide and diaphragmatic hernia-saline groups. Distal airway size, mean linear intercept, as well as airspace and tissue fractions were similar in diaphragmatic hernia-perfluorooctylbromide, diaphragmatic hernia-saline, and control groups. CONCLUSIONS: Fetal perfluorooctylbromide treatment improves lung growth, lung mechanics, and extracellular matrix remodeling in hypoplastic lungs, most probably due to transient pulmonary stretch, preserved fetal breathing movements, and its physical characteristics. Perfluorooctylbromide instillation is a promising approach for prenatal therapy of lung hypoplasia.


Assuntos
Fluorocarbonos/farmacologia , Hérnias Diafragmáticas Congênitas/tratamento farmacológico , Pulmão/fisiopatologia , Animais , Feto , Hidrocarbonetos Bromados , Pulmão/crescimento & desenvolvimento , Complacência Pulmonar/efeitos dos fármacos , Metaloproteinase 2 da Matriz/biossíntese , Surfactantes Pulmonares/metabolismo , RNA Mensageiro/biossíntese , Coelhos , Inibidor Tecidual de Metaloproteinase-1/biossíntese , Inibidor Tecidual de Metaloproteinase-2/biossíntese
20.
PLoS One ; 7(6): e40011, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22768197

RESUMO

Tissue-specific transcripts are likely to be of importance for the corresponding organ. While attempting to define the specific transcriptome of the human lung, we identified the transcript of a yet uncharacterized protein, SFTA2. In silico analyses, biochemical methods, fluorescence imaging and animal challenge experiments were employed to characterize SFTA2. Human SFTA2 is located on Chr. 6p21.33, a disease-susceptibility locus for diffuse panbronchiolitis. RT-PCR verified the abundance of SFTA2-specific transcripts in human and mouse lung. SFTA2 is synthesized as a hydrophilic precursor releasing a 59 amino acid mature peptide after cleavage of an N-terminal secretory signal. SFTA2 has no recognizable homology to other proteins while orthologues are present in all mammals. SFTA2 is a glycosylated protein and specifically expressed in nonciliated bronchiolar epithelium and type II pneumocytes. In accordance with other hydrophilic surfactant proteins, SFTA2 did not colocalize with lamellar bodies but colocalized with golgin97 and clathrin-labelled vesicles, suggesting a classical secretory pathway for its expression and secretion. In the mouse lung, Sfta2 was significantly downregulated after induction of an inflammatory reaction by intratracheal lipopolysaccharides paralleling surfactant proteins B and C but not D. Hyperoxia, however, did not alter SFTA2 mRNA levels. We have characterized SFTA2 and present it as a novel unique secretory peptide highly expressed in the lung.


Assuntos
Hiperóxia/genética , Lipopolissacarídeos/farmacologia , Pulmão/metabolismo , Pulmão/patologia , Peptídeos/metabolismo , Proteína A Associada a Surfactante Pulmonar/metabolismo , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Sequência de Aminoácidos , Animais , Brônquios/patologia , Linhagem Celular , Vesículas Citoplasmáticas/metabolismo , Células Epiteliais/metabolismo , Feminino , Imunofluorescência , Secções Congeladas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Glicosilação/efeitos dos fármacos , Humanos , Hiperóxia/patologia , Immunoblotting , Pulmão/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/genética , Regiões Promotoras Genéticas/genética , Proteína A Associada a Surfactante Pulmonar/química , Proteína A Associada a Surfactante Pulmonar/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA