Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598269

RESUMO

Heat stress can cause cell death by triggering the aggregation of essential proteins. In bacteria, aggregated proteins are rescued by the canonical Hsp70/AAA+ (ClpB) bi-chaperone disaggregase. Man-made, severe stress conditions applied during, e.g., food processing represent a novel threat for bacteria by exceeding the capacity of the Hsp70/ClpB system. Here, we report on the potent autonomous AAA+ disaggregase ClpL from Listeria monocytogenes that provides enhanced heat resistance to the food-borne pathogen enabling persistence in adverse environments. ClpL shows increased thermal stability and enhanced disaggregation power compared to Hsp70/ClpB, enabling it to withstand severe heat stress and to solubilize tight aggregates. ClpL binds to protein aggregates via aromatic residues present in its N-terminal domain (NTD) that adopts a partially folded and dynamic conformation. Target specificity is achieved by simultaneous interactions of multiple NTDs with the aggregate surface. ClpL shows remarkable structural plasticity by forming diverse higher assembly states through interacting ClpL rings. NTDs become largely sequestered upon ClpL ring interactions. Stabilizing ring assemblies by engineered disulfide bonds strongly reduces disaggregation activity, suggesting that they represent storage states.


Assuntos
Listeria monocytogenes , Defeitos do Tubo Neural , Humanos , Animais , Morte Celular , Estro , Alimentos , Proteínas de Choque Térmico HSP70
2.
Nat Struct Mol Biol ; 30(8): 1119-1131, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291423

RESUMO

The 5S ribonucleoprotein (RNP) is assembled from its three components (5S rRNA, Rpl5/uL18 and Rpl11/uL5) before being incorporated into the pre-60S subunit. However, when ribosome synthesis is disturbed, a free 5S RNP can enter the MDM2-p53 pathway to regulate cell cycle and apoptotic signaling. Here we reconstitute and determine the cryo-electron microscopy structure of the conserved hexameric 5S RNP with fungal or human factors. This reveals how the nascent 5S rRNA associates with the initial nuclear import complex Syo1-uL18-uL5 and, upon further recruitment of the nucleolar factors Rpf2 and Rrs1, develops into the 5S RNP precursor that can assemble into the pre-ribosome. In addition, we elucidate the structure of another 5S RNP intermediate, carrying the human ubiquitin ligase Mdm2, which unravels how this enzyme can be sequestered from its target substrate p53. Our data provide molecular insight into how the 5S RNP can mediate between ribosome biogenesis and cell proliferation.


Assuntos
RNA Ribossômico 5S , Proteína Supressora de Tumor p53 , Humanos , RNA Ribossômico 5S/química , Proteína Supressora de Tumor p53/metabolismo , Microscopia Crioeletrônica , Proteínas Ribossômicas/metabolismo , Ribonucleoproteínas/metabolismo , Ribossomos/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo
3.
Nat Commun ; 11(1): 776, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32034140

RESUMO

Human Ebp1 is a member of the proliferation-associated 2G4 (PA2G4) family and plays an important role in cancer regulation. Ebp1 shares the methionine aminopeptidase (MetAP) fold and binds to mature 80S ribosomes for translational control. Here, we present a cryo-EM single particle analysis reconstruction of Ebp1 bound to non-translating human 80S ribosomes at a resolution range from 3.3 to ~8 Å. Ebp1 blocks the tunnel exit with major interactions to the general uL23/uL29 docking site for nascent chain-associated factors complemented by eukaryote-specific eL19 and rRNA helix H59. H59 is defined as dynamic adaptor undergoing significant remodeling upon Ebp1 binding. Ebp1 recruits rRNA expansion segment ES27L to the tunnel exit via specific interactions with rRNA consensus sequences. The Ebp1-ribosome complex serves as a template for MetAP binding and provides insights into the structural principles for spatial coordination of co-translational events and molecular triage at the ribosomal tunnel exit.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Subunidades Ribossômicas/metabolismo , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Conformação Proteica , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Subunidades Ribossômicas/química
4.
Cell ; 166(2): 380-393, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27419870

RESUMO

The 90S pre-ribosome is an early biogenesis intermediate formed during co-transcriptional ribosome formation, composed of ∼70 assembly factors and several small nucleolar RNAs (snoRNAs) that associate with nascent pre-rRNA. We report the cryo-EM structure of the Chaetomium thermophilum 90S pre-ribosome, revealing how a network of biogenesis factors including 19 ß-propellers and large α-solenoid proteins engulfs the pre-rRNA. Within the 90S pre-ribosome, we identify the UTP-A, UTP-B, Mpp10-Imp3-Imp4, Bms1-Rcl1, and U3 snoRNP modules, which are organized around 5'-ETS and partially folded 18S rRNA. The U3 snoRNP is strategically positioned at the center of the 90S particle to perform its multiple tasks during pre-rRNA folding and processing. The architecture of the elusive 90S pre-ribosome gives unprecedented structural insight into the early steps of pre-rRNA maturation. Nascent rRNA that is co-transcriptionally folded and given a particular shape by encapsulation within a dedicated mold-like structure is reminiscent of how polypeptides use chaperone chambers for their protein folding.


Assuntos
Chaetomium/química , Biogênese de Organelas , Ribossomos/química , Saccharomyces cerevisiae/química , Chaetomium/classificação , Microscopia Crioeletrônica , Modelos Moleculares , RNA Ribossômico 18S/química , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Menores de Eucariotos/química , Ribossomos/ultraestrutura
5.
Nat Struct Mol Biol ; 23(1): 37-44, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26619264

RESUMO

Ribosome synthesis is catalyzed by ∼200 assembly factors, which facilitate efficient production of mature ribosomes. Here, we determined the cryo-EM structure of a Saccharomyces cerevisiae nucleoplasmic pre-60S particle containing the dynein-related 550-kDa Rea1 AAA(+) ATPase and the Rix1 subcomplex. This particle differs from its preceding state, the early Arx1 particle, by two massive structural rearrangements: an ∼180° rotation of the 5S ribonucleoprotein complex and the central protuberance (CP) rRNA helices, and the removal of the 'foot' structure from the 3' end of the 5.8S rRNA. Progression from the Arx1 to the Rix1 particle was blocked by mutational perturbation of the Rix1-Rea1 interaction but not by a dominant-lethal Rea1 AAA(+) ATPase-ring mutant. After remodeling, the Rix1 subcomplex and Rea1 become suitably positioned to sense correct structural maturation of the CP, which allows unidirectional progression toward mature ribosomes.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Biogênese de Organelas , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Microscopia Crioeletrônica , Modelos Moleculares , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo
6.
Methods Cell Biol ; 122: 99-115, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24857727

RESUMO

The discovery of dynein light chain 2 (Dyn2) as a member of the nucleoporins in yeast led to a series of applications to study NPC structure and function. Its intriguing ability to act as a hub for the parallel dimerization of two short amino acid sequence motifs (DID) prompted us to utilize it as a tool for probing nucleocytoplasmic transport in vivo. Further, the distinct structure of the Dyn2-DID rod, which is easily visible in the electron microscope, allowed us to develop a precise structural label on proteins or protein complexes. This label was used to identify the position of subunits in NPC subcomplexes or to derive at pseudo-atomic models of single large Nups. The versatility for various applications of the DID-Dyn2 system makes it an attractive molecular tool beyond the nuclear pore and transport field.


Assuntos
Dineínas/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/ultraestrutura , Poro Nuclear/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Dados de Sequência Molecular , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
7.
Nat Struct Mol Biol ; 17(6): 775-8, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20512149

RESUMO

Positional knowledge of subunits within multiprotein assemblies is crucial for understanding their function. The topological analysis of protein complexes by electron microscopy has undergone impressive development, but analysis of the exact positioning of single subunits has lagged behind. Here we have developed a clonable approximately 80-residue tag that, upon attachment to a target protein, can recruit a structurally prominent electron microscopy label in vitro. This tag is readily visible on single particles and becomes exceptionally distinct after image processing and classification. Thus, our method is applicable for the exact topological mapping of subunits in macromolecular complexes.


Assuntos
Microscopia Eletrônica/métodos , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Mapeamento de Peptídeos/métodos , Subunidades Proteicas/química , Sequência de Aminoácidos , Dineínas/química , Dineínas/genética , Dineínas/ultraestrutura , Complexos Endossomais de Distribuição Requeridos para Transporte/química , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/ultraestrutura , Processamento de Imagem Assistida por Computador , Dados de Sequência Molecular , Complexos Multiproteicos/genética , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/ultraestrutura , Subunidades Proteicas/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura
8.
Nat Cell Biol ; 9(7): 788-96, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17546040

RESUMO

Nucleocytoplasmic transport occurs through nuclear pore complexes (NPCs) embedded in the nuclear envelope. Here, we discovered an unexpected role for yeast dynein light chain (Dyn2) in the NPC. Dyn2 is a previously undescribed nucleoporin that functions as molecular glue to dimerize and stabilize the Nup82-Nsp1-Nup159 complex, a module of the cytoplasmic pore filaments. Biochemical analyses showed that Dyn2 binds to a linear motif (termed DID(Nup159)) inserted between the Phe-Gly repeat and coiled-coil domain of Nup159. Electron microscopy revealed that the reconstituted Dyn2-DID(Nup159) complex forms a rigid rod-like structure, in which five Dyn2 homodimers align like 'pearls on a string' between two extented DID(Nup159) strands. These findings imply that the rigid 20 nm long Dyn2-DID(Nup159) filament projects the Nup159 Phe-Gly repeats from the Nup82 module. Thus, it is possible that dynein light chain plays a role in organizing natively unfolded Phe-Gly repeats within the NPC scaffold to facilitate nucleocytoplasmic transport.


Assuntos
Dineínas/fisiologia , Complexo de Proteínas Formadoras de Poros Nucleares/fisiologia , Poro Nuclear/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Dimerização , Humanos , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína
9.
J Mol Microbiol Biotechnol ; 10(2-4): 208-22, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16645316

RESUMO

The proton-pumping NADH:ubiquinone oxidoreductase, the respiratory complex I, couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. The enzyme mechanism is still unknown due to the lack of a high-resolution structure and its complicated composition. The complex from Escherichia coli is made up of 13 subunits called NuoA through NuoN and contains one FMN and nine iron-sulfur (Fe/S) clusters as redox groups. The pH dependence of the midpoint redox potential of the Fe/S cluster named N2 and its spin-spin interaction with ubiquinone radicals made it an ideal candidate for a key component in redox-driven proton translocation. During the past years we have assigned the subunit localization of cluster N2 to subunit NuoB by site-directed mutagenesis and predicted its ligation by molecular simulation. Redox-induced FT-IR spectroscopy has shown that its redox reaction is accompanied by the protonation and deprotonation of individual amino acid residues. These residues have been identified by site-directed mutagenesis. The enzyme catalytic activity depends on the presence of cluster N2 and is coupled with major conformational changes. From these data a model for redox-induced conformation-driven proton translocation has been derived.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Escherichia coli/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Prótons , Ubiquinona/metabolismo , Sequência de Aminoácidos , Aminoácidos/metabolismo , Transporte de Elétrons , Complexo I de Transporte de Elétrons/química , Ferro/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Oxirredução , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Homologia de Sequência de Aminoácidos , Enxofre/metabolismo
10.
J Biol Chem ; 278(48): 47602-9, 2003 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-12975362

RESUMO

The proton-pumping NADH:ubiquinone oxidoreductase, also called respiratory complex I, couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. One FMN and up to 9 iron-sulfur (Fe/S) clusters participate in the redox reaction. There is discussion that the EPR-detectable Fe/S cluster N2 is involved in proton pumping. However, the assignment of this cluster to a distinct subunit of the complex as well as the number of Fe/S clusters giving rise to the EPR signal are still under debate. Complex I from Escherichia coli consists of 13 polypeptides called NuoA to N. Either subunit NuoB or NuoI could harbor Fe/S cluster N2. Whereas NuoB contains a unique motif for the binding of one Fe/S cluster, NuoI contains a typical ferredoxin motif for the binding of two Fe/S clusters. Individual mutation of all four conserved cysteine residues in NuoB resulted in a loss of complex I activity and of the EPR signal of N2 in the cytoplasmic membrane as well as in the isolated complex. Individual mutations of all eight conserved cysteine residues of NuoI revealed a variable phenotype. Whereas cluster N2 was lost in most NuoI mutants, it was still present in the cytoplasmic membranes of the mutants NuoI C63A and NuoI C102A. N2 was also detected in the complex isolated from the mutant NuoI C102A. From this we conclude that the Fe/S cluster N2 is located on subunit NuoB.


Assuntos
Complexo I de Transporte de Elétrons/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Proteínas Ferro-Enxofre/química , NADH NADPH Oxirredutases/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Western Blotting , Divisão Celular , Cisteína/química , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/metabolismo , Ferredoxinas/química , Deleção de Genes , Vetores Genéticos , Ligantes , Magnetismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , NADP/química , Oxirredução , Peptídeos/química , Prótons , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA