Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Endocrinol ; 256(3)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36622663

RESUMO

Breast cancer (BC) is the most diagnosed cancer in women worldwide. In estrogen receptor (ER)-positive disease, anti-estrogens and aromatase inhibitors (AI) improve patient survival; however, many patients develop resistance. Dysregulation of apoptosis is a common resistance mechanism; thus, agents that can reinstate the activity of apoptotic pathways represent promising therapeutics for advanced drug-resistant disease. Emerging targets in this scenario include microRNAs (miRs). To identify miRs modulating apoptosis in drug-responsive and -resistant BC, a high-throughput miR inhibitor screen was performed, followed by high-content screening microscopy for apoptotic markers. Validation demonstrated that miR-361-3p inhibitor significantly increases early apoptosis and reduces proliferation of drug-responsive (MCF7), plus AI-/antiestrogen-resistant derivatives (LTED, TamR, FulvR), and ER- cells (MDA-MB-231). Importantly, proliferation-inhibitory effects were observed in vivo in a xenograft model, indicating the potential clinical application of miR-361-3p inhibition. RNA-seq of tumour xenografts identified FANCA as a direct miR-361-3p target, and validation suggested miR-361-3p inhibitor effects might be mediated in part through FANCA modulation. Moreover, miR-361-3p inhibition resulted in p53-mediated G1 cell cycle arrest through activation of p21 and reduced BC invasion. Analysis of publicly available datasets showed miR-361-3p expression is significantly higher in primary breast tumours vspaired normal tissue and is associated with decreased overall survival. In addition, miR-361-3p inhibitor treatment of BC patient explants decreased levels of miR-361-3p and proliferation marker, Ki67. Finally, miR-361-3p inhibitor showed synergistic effects on BC growth when combined with PARP inhibitor, Olaparib. Together, these studies identify miR-361-3p inhibitor as a potential new treatment for drug-responsive and -resistant advanced BC.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Antagonistas de Estrogênios/farmacologia , Inibidores da Aromatase/farmacologia , Inibidores da Aromatase/uso terapêutico , Apoptose/genética , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral
2.
Mol Cancer ; 21(1): 82, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35317841

RESUMO

BACKGROUND: miR-346 was identified as an activator of Androgen Receptor (AR) signalling that associates with DNA damage response (DDR)-linked transcripts in prostate cancer (PC). We sought to delineate the impact of miR-346 on DNA damage, and its potential as a therapeutic agent. METHODS: RNA-IP, RNA-seq, RNA-ISH, DNA fibre assays, in vivo xenograft studies and bioinformatics approaches were used alongside a novel method for amplification-free, single nucleotide-resolution genome-wide mapping of DNA breaks (INDUCE-seq). RESULTS: miR-346 induces rapid and extensive DNA damage in PC cells - the first report of microRNA-induced DNA damage. Mechanistically, this is achieved through transcriptional hyperactivation, R-loop formation and replication stress, leading to checkpoint activation and cell cycle arrest. miR-346 also interacts with genome-protective lncRNA NORAD to disrupt its interaction with PUM2, leading to PUM2 stabilisation and its increased turnover of DNA damage response (DDR) transcripts. Confirming clinical relevance, NORAD expression and activity strongly correlate with poor PC clinical outcomes and increased DDR in biopsy RNA-seq studies. In contrast, miR-346 is associated with improved PC survival. INDUCE-seq reveals that miR-346-induced DSBs occur preferentially at binding sites of the most highly-transcriptionally active transcription factors in PC cells, including c-Myc, FOXA1, HOXB13, NKX3.1, and importantly, AR, resulting in target transcript downregulation. Further, RNA-seq reveals widespread miR-346 and shNORAD dysregulation of DNA damage, replication and cell cycle processes. NORAD drives target-directed miR decay (TDMD) of miR-346 as a novel genome protection mechanism: NORAD silencing increases mature miR-346 levels by several thousand-fold, and WT but not TDMD-mutant NORAD rescues miR-346-induced DNA damage. Importantly, miR-346 sensitises PC cells to DNA-damaging drugs including PARP inhibitor and chemotherapy, and induces tumour regression as a monotherapy in vivo, indicating that targeting miR-346:NORAD balance is a valid therapeutic strategy. CONCLUSIONS: A balancing act between miR-346 and NORAD regulates DNA damage and repair in PC. miR-346 may be particularly effective as a therapeutic in the context of decreased NORAD observed in advanced PC, and in transcriptionally-hyperactive cancer cells.


Assuntos
MicroRNAs , Neoplasias da Próstata , RNA Longo não Codificante , Ciclo Celular , Dano ao DNA , Humanos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Próstata/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA