Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Sci Transl Med ; 16(750): eadi4125, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38838135

RESUMO

Chronic inflammation is a constitutive component of many age-related diseases, including age-related macular degeneration (AMD). Here, we identified interleukin-1 receptor-associated kinase M (IRAK-M) as a key immunoregulator in retinal pigment epithelium (RPE) that declines during the aging process. Rare genetic variants of IRAK3, which encodes IRAK-M, were associated with an increased likelihood of developing AMD. In human samples and mouse models, IRAK-M abundance in the RPE declined with advancing age or exposure to oxidative stress and was further reduced in AMD. Irak3-knockout mice exhibited an increased incidence of outer retinal degeneration at earlier ages, which was further exacerbated by oxidative stressors. The absence of IRAK-M led to a disruption in RPE cell homeostasis, characterized by compromised mitochondrial function, cellular senescence, and aberrant cytokine production. IRAK-M overexpression protected RPE cells against oxidative or immune stressors. Subretinal delivery of adeno-associated virus (AAV)-expressing human IRAK3 rescued light-induced outer retinal degeneration in wild-type mice and attenuated age-related spontaneous retinal degeneration in Irak3-knockout mice. Our data show that replenishment of IRAK-M in the RPE may redress dysregulated pro-inflammatory processes in AMD, suggesting a potential treatment for retinal degeneration.


Assuntos
Quinases Associadas a Receptores de Interleucina-1 , Camundongos Knockout , Estresse Oxidativo , Degeneração Retiniana , Epitélio Pigmentado da Retina , Animais , Humanos , Masculino , Camundongos , Senescência Celular , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Quinases Associadas a Receptores de Interleucina-1/genética , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Degeneração Macular/genética , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Degeneração Retiniana/genética , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia
2.
Am J Ophthalmol ; 257: 247-253, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37757996

RESUMO

PURPOSE: Retinal drusen have been described in people with IgA nephropathy. We examined the frequency of drusen in IgA nephropathy and compared their location and composition with those for drusen in age-related macular degeneration. DESIGN: Immunohistological case series of eyes of patients with IgA nephropathy, and a comparison eye with age-related macular degeneration. METHODS: Donor eyes from 4 individuals (3 male, 1 female, aged 40-80 years) with biopsy-proven IgA nephropathy and kidney failure were examined for the presence of drusen, and location and composition using antibodies for vitronectin, IgA, IgM, IgG, C3, and C1q. Results were compared with those for drusen in macular degeneration without IgA nephropathy. RESULTS: All 4 donors had sparse, subretinal pigment epithelium drusen of 55-65 mm diameter that stained for vitronectin but not for IgA or complement. All donors had retinal capillaries and choriocapillaris staining for IgA. The youngest donor (female, 40) had rare deposits in the outer nuclear layer that stained for IgA, but not for vitronectin. The oldest donor (male, 82) had large cystlike spaces in the inner nuclear and plexiform layers, and smaller cysts in the outer nuclear layer, with no staining for IgA or complement. CONCLUSIONS: Retinal drusen are uncommon in IgA nephropathy, even with kidney failure. Drusen in IgA nephropathy resemble drusen found in age-related macular degeneration. IgA-staining deposits in the outer nuclear layer were likely due to systemic deposition of IgA and complement activation. The nature of cystic spaces is unknown. Further analysis of the retinas of people with glomerulonephritis is recommended.


Assuntos
Glomerulonefrite por IGA , Degeneração Macular , Insuficiência Renal , Drusas Retinianas , Humanos , Masculino , Feminino , Drusas Retinianas/diagnóstico , Drusas Retinianas/patologia , Glomerulonefrite por IGA/complicações , Glomerulonefrite por IGA/diagnóstico , Vitronectina , Degeneração Macular/patologia , Imunoglobulina A
3.
Ophthalmic Genet ; 44(1): 19-27, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36579937

RESUMO

INTRODUCTION: Scalp-Ear-Nipple syndrome is caused by pathogenic KCTD1 variants and characterised by a scalp defect, prominent ears, and rudimentary breasts. We describe here further clinical associations in the eye and kidney. METHODS: Fifteen affected members from two unrelated families with p.(Ala30Glu) or p.(Pro31Leu) in KCTD1 were examined for ocular and renal abnormalities. The relevant proteins were studied in the eye and kidney, and the mutation consequences determined from mouse knockout models. RESULTS: Five males and 10 females with a median age of 40 years (range 1-70) with pathogenic variants p.(Ala30Glu) (n = 12) or p.(Pro31Leu) (n = 3) in KCTD1 were studied. Of the 6 who underwent detailed ophthalmic examination, 5 (83%) had low myopic astigmatism, the mean spherical equivalent of 10 eyes was 2.38D, and one (17%) had hypermetropic astigmatism. One female had a divergent strabismus.Five individuals had renal cysts (5/15, 33%), with renal biopsy in one demonstrating a thinned glomerular basement membrane identical to that seen in Thin basement membrane nephropathy (AD Alport syndrome).In the eye, KCTD1 and its downstream targets, TFAP2, and the collagen IV α3 and α4 chains localised to the cornea and near the retinal amacrine cells. In the kidney, all these proteins except TFAP2 were expressed in the podocytes and distal tubules. TFAP2B and COL4A4 knockout mice also had kidney cysts, and COL4A3 and COL4A4 knockout mice had myopia. CONCLUSION: Individuals with a pathogenic KCTD1 variant may have low myopic astigmatism and represent a further rare genetic cause for a thinned glomerular basement membrane.


Assuntos
Astigmatismo , Miopia , Masculino , Camundongos , Animais , Feminino , Humanos , Mamilos/metabolismo , Astigmatismo/patologia , Couro Cabeludo/metabolismo , Colágeno Tipo IV/genética , Mutação , Camundongos Knockout , Síndrome , Membrana Basal/metabolismo , Membrana Basal/patologia , Miopia/genética , Miopia/patologia , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo
4.
Purinergic Signal ; 18(4): 469-479, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36001279

RESUMO

We have shown deficits in monocyte phagocytosis from patients with age-related macular degeneration (AMD). Cell membrane fluidity is known to affect phagocytic capacity and leucocyte functionality more generally. Therefore, we examined membrane fluidity of peripheral blood leucocytes in human patients with AMD and in the P2X7 null mouse model of AMD using flow cytometry with a fluorescent probe for fluidity, TMA-DPH. The results showed that membrane fluidity was decreased in all leucocyte types of late AMD relative to healthy controls (HC) including monocytes, neutrophils and lymphocytes but this was not apparent in earlier stages of AMD. Further analysis of factors contributing to membrane fluidity indicated that pre-treatment of monocytes and lymphocytes with ATP greatly increased membrane fluidity in humans and mice. Evidence from P2X7 null mice and P2X7 antagonists confirmed that these ATP-driven increases in membrane fluidity were mediated by P2X7 but were not associated with the classic P2X7 functions of pore formation or phagocytosis. Analysis of P2X7 expression indicated that receptor levels were elevated in classic monocytes of late AMD patients, further suggesting the P2X7 may contribute to altered plasma membrane properties. Our findings identified a novel biological function of P2X7 in modulating membrane fluidity of leucocytes and demonstrated reduced membrane fluidity in cellular changes associated with the late stage of AMD.


Assuntos
Degeneração Macular , Fluidez de Membrana , Humanos , Animais , Camundongos , Degeneração Macular/metabolismo , Leucócitos/metabolismo , Fagocitose , Trifosfato de Adenosina
5.
Autophagy ; 18(10): 2368-2384, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35196199

RESUMO

Age-related macular degeneration (AMD) is a leading cause of vision loss with recent evidence indicating an important role for macroautophagy/autophagy in disease progression. In this study we investigate the efficacy of targeting autophagy for slowing dysfunction in a mouse model with features of early AMD. Mice lacking APOE (apolipoprotein E; B6.129P2-Apoetm1UncJ/Arc) and C57BL/6 J- (wild-type, WT) mice were treated with metformin or trehalose in the drinking water from 5 months of age and the ocular phenotype investigated at 13 months. Control mice received normal drinking water. APOE-control mice had reduced retinal function and thickening of Bruch's membrane consistent with an early AMD phenotype. Immunohistochemical labeling showed reductions in MAP1LC3B/LC3 (microtubule-associated protein 1 light chain 3 beta) and LAMP1 (lysosomal-associated membrane protein 1) labeling in the photoreceptors and retinal pigment epithelium (RPE). This correlated with increased LC3-II:LC3-I ratio and alterations in protein expression in multiple autophagy pathways measured by reverse phase protein array, suggesting autophagy was slowed. Treatment of APOE-mice with metformin or trehalose ameliorated the loss of retinal function and reduced Bruch's membrane thickening, enhancing LC3 and LAMP1 labeling in the ocular tissues and restoring LC3-II:LC3-I ratio to WT levels. Protein analysis indicated that both treatments boost ATM-AMPK driven autophagy. Additionally, trehalose increased p-MAPK14/p38 to enhance autophagy. Our study shows that treatments targeting pathways to enhance autophagy have the potential for treating early AMD and provide support for the use of metformin, which has been found to reduce the risk of AMD development in human patients.Abbreviations:AMD: age-related macular degeneration; AMPK: 5' adenosine monophosphate-activated protein kinase APOE: apolipoprotein E; ATM: ataxia telangiectasia mutated; BCL2L1/Bcl-xL: BCL2-like 1; DAPI: 4'-6-diamidino-2-phenylindole; ERG: electroretinogram; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GCL: ganglion cell layer; INL: inner nuclear layer; IPL: inner plexiform layer; IS/OS: inner and outer photoreceptor segments; LAMP1: lysosomal-associated membrane protein 1; MAP1LC3B/LC3: microtubule-associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; OCT: optical coherence tomography; ONL: outer nuclear layer; OPs: oscillatory potentials; p-EIF4EBP1: phosphorylated eukaryotic translation initiation factor 4E binding protein 1; p-MAPK14/p38: phosphorylated mitogen-activated protein kinase 14; RPE: retinal pigment epithelium; RPS6KB/p70 S6 kinase: ribosomal protein S6 kinase; SQSTM1/p62: sequestosome 1; TP53/TRP53/p53: tumor related protein 53; TSC2: TSC complex subunit 2; WT: wild type.


Assuntos
Água Potável , Degeneração Macular , Metformina , Proteína Quinase 14 Ativada por Mitógeno , Proteínas Quinases Ativadas por AMP/metabolismo , Monofosfato de Adenosina , Animais , Apolipoproteínas E/genética , Autofagia/genética , Água Potável/metabolismo , Humanos , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Degeneração Macular/tratamento farmacológico , Degeneração Macular/patologia , Metformina/farmacologia , Metformina/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Fenótipo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteína Sequestossoma-1/metabolismo , Sirolimo , Serina-Treonina Quinases TOR/metabolismo , Trealose , Proteína Supressora de Tumor p53/genética
6.
Clin Exp Optom ; 2020 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-33090561

RESUMO

Photoreceptor death is an important contributor to irreversible vision loss worldwide. In this review, I outline our work examining the role that purines, such as adenosine triphosphate (ATP), have in normal retinal function and in retinal disease. Our work shows that the actions of ATP, mediated by P2X receptors, are expressed in various retinal layers including photoreceptor terminals, and when stimulated by excessive levels of ATP is associated with rapid death of neurons. Treatment with a compound that blocks the action of P2X and some P2Y receptors reduces photoreceptor death in a mouse model of retinal degeneration. Our observations not only provide a means for developing a potential treatment for reducing photoreceptor death, but also provides a novel way of studying the neural plasticity effects that develop in the inner retina following photoreceptor death. There are a range of inner retinal changes that could influence the effectiveness of retinal prostheses. Indeed, using an ATP-induced degeneration model, we established that the amount of electrical stimulation required to elicit a response in the visual cortex was affected by the level of glial scarring. However, changes in P2X7 receptor expression by OFF ganglion cells during retinal degeneration can also be exploited by photoswitches to restore light sensitivity to degenerated retinae. Finally, our work has also considered how P2X7 expression by innate immune cells, and its role as a scavenger receptor, contributes to age-related macular degeneration (AMD). Our results show that loss of P2X7 function is associated with thickening of Bruch's membrane as well as increased risk of advanced disease in people with AMD. Overall, our work over the last 20 years highlights the importance of purinergic signalling in normal retinal function and retinal disease and suggest that developing therapies that target P2X7 function could be of benefit for these diseases.

7.
Methods Mol Biol ; 2041: 209-221, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31646491

RESUMO

Adenosine triphosphate (ATP) is actively transported into vesicles for purinergic neurotransmission by the vesicular nucleotide transporter, VNUT, encoded by the gene, solute carrier 17, member 9 (SLC17A9). In this chapter, methods are described for fluorescent labeling of VNUT positive cells and quantification of vesicular ATP release using live cell imaging. Directions for preparation of viable dissociated neurons and cellular labeling with an antibody against VNUT and for ATP containing synaptic vesicles with fluorescent ATP markers, quinacrine or MANT-ATP, are detailed. Using confocal microscope live cell imaging, cells positive for VNUT can be observed colocalized with fluorescent ATP vesicular markers, which occur as discrete puncta near the cell membrane. Vesicular release, stimulated with a depolarizing, high potassium physiological saline solution induces ATP marker fluorescence reduction at the cell membrane and this can be quantified over time to assess ATP release. Pretreatment with the voltage gated calcium channel blocker, cadmium, blocks depolarization-induced membrane fluorescence changes, suggesting that VNUT-positive neurons release ATP via calcium-dependent exocytosis. This technique may be applied for quantifying vesicular ATP release across the peripheral and central nervous system and is useful for unveiling the intricacies of purinergic neurotransmission.


Assuntos
Trifosfato de Adenosina/metabolismo , Imunofluorescência/métodos , Neurônios/metabolismo , Proteínas de Transporte de Nucleotídeos/metabolismo , Retina/metabolismo , Vesículas Secretórias/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Transporte Biológico , Exocitose , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Neurônios/ultraestrutura , Retina/ultraestrutura
8.
Front Cell Neurosci ; 14: 553708, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33536874

RESUMO

Retinitis pigmentosa is a family of inherited retinal degenerations associated with gradual loss of photoreceptors, that ultimately leads to irreversible vision loss. The Royal College of Surgeon's (RCS) rat carries a recessive mutation affecting mer proto-oncogene tyrosine kinase (merTK), that models autosomal recessive disease. The aim of this study was to understand the glial, microglial, and photoreceptor changes that occur in different retinal locations with advancing disease. Pigmented RCS rats (RCS-p+/LAV) and age-matched isogenic control rdy (RCS-rdy +p+/LAV) rats aged postnatal day 18 to 6 months were evaluated for in vivo retinal structure and function using optical coherence tomography and electroretinography. Retinal tissues were assessed using high resolution immunohistochemistry to evaluate changes in photoreceptors, glia and microglia in the dorsal, and ventral retina. Photoreceptor dysfunction and death occurred from 1 month of age. There was a striking difference in loss of photoreceptors between the dorsal and ventral retina, with a greater number of photoreceptors surviving in the dorsal retina, despite being adjacent a layer of photoreceptor debris within the subretinal space. Loss of photoreceptors in the ventral retina was associated with fragmentation of the outer limiting membrane, extension of glial processes into the subretinal space that was accompanied by possible adhesion and migration of mononuclear phagocytes in the subretinal space. Overall, these findings highlight that breakdown of the outer limiting membrane could play an important role in exacerbating photoreceptor loss in the ventral retina. Our results also highlight the value of using the RCS rat to model sectorial retinitis pigmentosa, a disease known to predominantly effect the inferior retina.

9.
Invest Ophthalmol Vis Sci ; 59(2): 731-745, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29392319

RESUMO

Purpose: Subthreshold, nanosecond pulsed laser treatment shows promise as a treatment for age-related macular degeneration (AMD); however, the safety profile needs to be robustly examined. The aim of this study was to investigate the effects of laser treatment in humans and mice. Methods: Patients with AMD were treated with nanosecond pulsed laser at subthreshold (no visible retinal effect) energy doses (0.15-0.45 mJ) and retinal sensitivity was assessed with microperimetry. Adult C57BL6J mice were treated at subthreshold (0.065 mJ) and suprathreshold (photoreceptor loss, 0.5 mJ) energy settings. The retinal and vascular responses were analyzed by fundus imaging, histologic assessment, and quantitative PCR. Results: Microperimetry analysis showed laser treatment had no effect on retinal sensitivity under treated areas in patients 6 months to 7 years after treatment. In mice, subthreshold laser treatment induced RPE loss at 5 hours, and by 7 days the RPE had retiled. Fundus imaging showed reduced RPE pigmentation but no change in retinal thickness up to 3 months. Electron microscopy revealed changes in melanosomes in the RPE, but Bruch's membrane was intact across the laser regions. Histologic analysis showed normal vasculature and no neovascularization. Suprathreshold laser treatment did not induce changes in angiogenic genes associated with neovascularization. Instead pigment epithelium-derived factor, an antiangiogenic factor, was upregulated. Conclusions: In humans, low-energy, nanosecond pulsed laser treatment is not damaging to local retinal sensitivity. In mice, treatment does not damage Bruch's membrane or induce neovascularization, highlighting a reduced side effect profile of this nanosecond laser when used in a subthreshold manner.


Assuntos
Cegueira/prevenção & controle , Terapia com Luz de Baixa Intensidade , Degeneração Macular/radioterapia , Neovascularização Retiniana/prevenção & controle , Idoso , Animais , Cegueira/fisiopatologia , Proteínas do Olho/genética , Feminino , Angiofluoresceinografia , Humanos , Imuno-Histoquímica , Lasers de Estado Sólido/uso terapêutico , Degeneração Macular/fisiopatologia , Masculino , Melanossomas/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Pessoa de Meia-Idade , Fatores de Crescimento Neural/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Retina/fisiopatologia , Neovascularização Retiniana/fisiopatologia , Epitélio Pigmentado da Retina/fisiopatologia , Serpinas/genética , Fator A de Crescimento do Endotélio Vascular/genética , Acuidade Visual/fisiologia , Testes de Campo Visual
10.
Surv Ophthalmol ; 63(3): 307-328, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28987614

RESUMO

Because of complications and side effects, conventional laser therapy has taken a back seat to drugs in the treatment of macular diseases. Despite this, research on new laser modalities remains active. In particular, various approaches are being pursued to preserve and improve retinal structure and function. These include micropulsing, various exposure titration algorithms, and real-time temperature feedback control of short-pulse continuous wave lasers, and ultra-short-pulse nanosecond lasers. Some of these approaches are at the preclinical stage of development, whereas others are available for clinical use. Cell biology is providing important insights into the mechanisms of action of retinal laser treatment. We outline the technological bases of current laser platforms, their basic science, therapeutic concepts, clinical experience, and future directions for retinal laser treatment.


Assuntos
Terapia a Laser/métodos , Doenças Retinianas/cirurgia , Previsões , Humanos , Fotocoagulação a Laser/métodos , Terapia a Laser/tendências , Fotocoagulação/métodos
11.
Optom Vis Sci ; 94(10): 939-945, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28858048

RESUMO

Age-related macular degeneration (AMD) is the leading cause of irreversible vision loss in those older than 80 years. Understanding the mechanisms that cause this condition or its progression is critical for developing novel treatments. Here we summarize our studies evaluating the role of purine, adenosine triphosphate (ATP), in early AMD as well as photoreceptor loss and have also provided some insights to our investigations of a new laser treatment for those with early AMD. One of the receptors that are activated by ATP, P2X7, is expressed by neurons and immune cells and has a different function in each cell type. In neurons, P2X7 receptors form a ligand-gated ion channel, whereas on immune cells P2X7 receptors act as a scavenger receptor. These distinct functions have provided new insights to the mechanisms of AMD. On the one hand, high concentrations of ATP can cause photoreceptor death, most likely via stimulation of P2X7 receptors localized on photoreceptor terminals. On the other hand, P2X7 receptors mediate removal of dead and dying cells by monocytes. By understanding the fundamental cell biological changes that occur in patients and animal models of disease, we have uncovered mechanisms that may help us manage and treat patients in the future.


Assuntos
Distinções e Prêmios , Degeneração Macular/etiologia , Degeneração Macular/terapia , Células Fotorreceptoras/fisiologia , Animais , Gerenciamento Clínico , Humanos
12.
Am J Pathol ; 187(8): 1670-1685, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28628761

RESUMO

Age-related macular degeneration (AMD) is a leading cause of irreversible, severe vision loss in Western countries. Recently, we identified a novel pathway involving P2X7 receptor scavenger function expressed on ocular immune cells as a risk factor for advanced AMD. In this study, we investigate the effect of loss of P2X7 receptor function on retinal structure and function during aging. P2X7-null and wild-type C57bl6J mice were investigated at 4, 12, and 18 months of age for macrophage phagocytosis activity, ocular histological changes, and retinal function. Phagocytosis activity of blood-borne macrophages decreased with age at 18 months in the wild-type mouse. Lack of P2X7 receptor function reduced phagocytosis at all ages compared to wild-type mice. At 12 months of age, P2X7-null mice had thickening of Bruchs membrane and retinal pigment epithelium dysfunction. By 18 months of age, P2X7-null mice displayed phenotypic characteristics consistent with early AMD, including Bruchs membrane thickening, retinal pigment epithelium cell loss, retinal functional deficits, and signs of subretinal inflammation. Our present study shows that loss of function of the P2X7 receptor in mice induces retinal changes representing characteristics of early AMD, providing a valuable model for investigating the role of scavenger receptor function and the immune system in the development of this age-related disease.


Assuntos
Envelhecimento/metabolismo , Macrófagos/metabolismo , Degeneração Macular/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Retina/metabolismo , Envelhecimento/patologia , Animais , Modelos Animais de Doenças , Células Ependimogliais/metabolismo , Células Ependimogliais/patologia , Gliose/genética , Gliose/metabolismo , Gliose/patologia , Macrófagos/patologia , Degeneração Macular/genética , Degeneração Macular/patologia , Camundongos , Camundongos Knockout , Fagocitose/fisiologia , Receptores Purinérgicos P2X7/genética , Retina/patologia
13.
Front Neurosci ; 11: 41, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28239332

RESUMO

To consider whether a circumlimbal suture can be used to chronically elevate intraocular pressure (IOP) in mice and to assess its effect on retinal structure, function and gene expression of stretch sensitive channels. Anesthetized adult C57BL6/J mice had a circumlimbal suture (10/0) applied around the equator of one eye. In treated eyes (n = 23) the suture was left in place for 12 weeks whilst in sham control eyes the suture was removed at day two (n = 17). Contralateral eyes served as untreated controls. IOP was measured after surgery and once a week thereafter. After 12 weeks, electroretinography (ERG) was performed to assess photoreceptor, bipolar cell and retinal ganglion cell (RGC) function. Retinal structure was evaluated using optical coherence tomography. Retinae were processed for counts of ganglion cell density or for quantitative RT-PCR to quantify purinergic (P2x7, Adora3, Entpd1) or stretch sensitive channel (Panx1, Trpv4) gene expression. Immediately after suture application, IOP spiked to 33 ± 3 mmHg. After 1 day, IOP had recovered to 27 ± 3 mmHg. Between weeks 2 and 12, IOP remained elevated above baseline (control 14 ± 1 mmHg, ocular hypertensive 19 ± 1 mmHg). Suture removal at day 2 (Sham) restored IOP to baseline levels, where it remained through to week 12. ERG analysis showed that 12 weeks of IOP elevation reduced photoreceptor (-15 ± 4%), bipolar cell (-15 ± 4%) and ganglion cell responses (-19 ± 6%) compared to sham controls and respective contralateral eyes (untreated). The retinal nerve fiber layer was thinned in the presence of normal total retinal thickness. Ganglion cell density was reduced across all quadrants (superior -12 ± 5%; temporal, -7% ± 2%; inferior -9 ± 4%; nasal -8 ± 5%). Quantitative RT-PCR revealed a significant increase in Entpd1 gene expression (+11 ± 4%), whilst other genes were not significantly altered (P2x7, Adora3, Trpv4, Panx1). Our results show that circumlimbal ligation produces mild chronic ocular hypertension and retinal dysfunction in mice. Consistent with a sustained change to purinergic signaling we found an up-regulation of Entpd1.

14.
Invest Ophthalmol Vis Sci ; 57(13): 5216-5229, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27701633

RESUMO

PURPOSE: Retinal prostheses have emerged as a promising technology to restore vision in patients with severe photoreceptor degeneration. To better understand how neural degeneration affects the efficacy of electronic implants, we investigated the function of a suprachoroidal retinal implant in a feline model. METHODS: Unilateral retinal degeneration was induced in four adult felines by intravitreal injection of adenosine triphosphate (ATP). Twelve weeks post injection, animals received suprachoroidal electrode array implants in each eye, and responses to electrical stimulation were obtained using multiunit recordings from the visual cortex. Histologic measurements of neural and glial changes in the retina at the implant site were correlated with cortical thresholds from individual stimulating electrodes. RESULTS: Adenosine triphosphate-injected eyes displayed changes consistent with mid-to-late stage retinal degeneration and remodeling. A significant increase in electrical charge was required to induce a cortical response from stimulation of the degenerated retina compared to that in the fellow control eye. Spatial and temporal characteristics of the electrically evoked cortical responses were no different between eyes. Individual electrode thresholds varied in both the control and the ATP-injected eyes and were correlated with ganglion cell density. In ATP-injected eyes, cortical threshold was also independently correlated with an increase in the extent of retinal gliosis. CONCLUSIONS: These data suggest that even when ganglion cell density remains unaffected, glial changes in the retina following degeneration can influence the efficacy of suprachoroidal electrical stimulation. A better understanding of how glial change impacts retinal prosthesis function may help to further the optimization of retinal implants.


Assuntos
Potenciais Evocados Visuais/fisiologia , Retina/cirurgia , Degeneração Retiniana/cirurgia , Córtex Visual/fisiopatologia , Próteses Visuais , Animais , Gatos , Modelos Animais de Doenças , Estimulação Elétrica/métodos , Eletrodos Implantados , Microeletrodos , Retina/fisiopatologia , Degeneração Retiniana/fisiopatologia
15.
Invest Ophthalmol Vis Sci ; 57(10): 3961-73, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27490318

RESUMO

PURPOSE: Drugs that regulate connexin43 (Cx43) gap junction channels can reduce the spread of injury and improve functional outcomes after nervous system trauma. In the eye, Cx43 expression increases in the choroid following light damage. The aim of this study was to investigate whether Cx43 hemichannel block could preserve retinal function postinjury. METHODS: Light damage was induced by exposure of adult albino Sprague-Dawley rats to 2700 Lux light for 24 hours. Intravitreal injections of a Cx43 mimetic peptide hemichannel blocker, Peptide5, or sham were administered 2 hours after the onset and at the end of the light damage period. Retinal function was assessed by electroretinogram and inflammatory responses in the choroid and retina were assessed using immunohistochemistry (ionized calcium binding adaptor molecule 1 [Iba-1], leukocyte common antigen [CD45], glial fibrillary acidic protein [GFAP]). RESULTS: Light-damaged rat eyes had (1) reduced neuronal responses in both the rod and cone pathways and (2) marked inflammatory responses in the choroid and retina. Peptide5 significantly preserved function of photoreceptoral and postphotoreceptoral neurons in these animals. This was evident 24 hours after injury and 2 weeks later, as shown by improved mixed a-wave and mixed b-wave amplitudes, isolated rod PII and PIII amplitudes, and cone PII responses when compared with sham-treated controls. Retinal thinning and inflammation were also significantly reduced in Peptide5-treated eyes when compared with sham-treated controls. CONCLUSIONS: Blocking Cx43 hemichannels after light damage can significantly improve functional outcomes of neurons in both the rod and cone photo-transduction pathways in the light-damaged animal model, likely by reducing choroid inflammation and suppressing the glial-mediated inflammatory response. These data may have relevance for the treatment of conditions such as diabetic retinopathy and age-related macular degeneration.


Assuntos
Conexina 43/administração & dosagem , Eletrorretinografia/efeitos dos fármacos , Inflamação/tratamento farmacológico , Degeneração Macular/tratamento farmacológico , Retina/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Materiais Biomiméticos/administração & dosagem , Proteínas de Ligação ao Cálcio/metabolismo , Conexina 43/biossíntese , Modelos Animais de Doenças , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica , Inflamação/metabolismo , Injeções Intravítreas , Antígenos Comuns de Leucócito/metabolismo , Luz/efeitos adversos , Degeneração Macular/metabolismo , Degeneração Macular/fisiopatologia , Masculino , Proteínas dos Microfilamentos/metabolismo , Ratos , Ratos Sprague-Dawley , Retina/metabolismo , Retina/fisiopatologia
16.
J Ocul Pharmacol Ther ; 32(8): 509-517, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27266716

RESUMO

Purines, when present in the extracellular space, can mediate fast neurotransmission in the retina and central nervous system. Over the last decade there has been emerging evidence for the expression of P2X and P2Y receptors in a range of retinal neuronal subtypes. These results have highlighted important roles for purines in modulating specific retinal circuits, including the rod pathway and amacrine cell circuits. Traditionally, synaptic release of adenosine triphosphate (ATP) involves the novel anion vesicular nucleotide transporter, VNUT, which has recently been identified in a single wide-field amacrine cell population. In addition, nontraditional, conductive mechanisms of release have also been described in the retina. In the synapse, the enzymes involved in rapid degradation of purines are present in both plexiform layers of the retina. A role for P2X receptors in retinal diseases has also emerged recently. High concentrations of ATP lead to photoreceptor loss, through mechanisms involving P2X7 receptors. In addition, activation of P2X7 receptors is associated with activation of the inflammasome, a protein complex important for the release of proinflammatory cytokines. P2X receptors, especially P2X7, are emerging as targets to combat retinal disease.


Assuntos
Receptores Purinérgicos P2X/metabolismo , Retina/metabolismo , Animais , Humanos , Receptores Purinérgicos P2X/análise
17.
Front Neuroanat ; 10: 46, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27199678

RESUMO

In rodents and felines, intravitreal administration of adenosine triphosphate (ATP) has been shown to induce photoreceptor death providing a tractable model of retinal degeneration in these species. This study investigated the long term effects of photoreceptor loss in an ATP induced feline model of retinal degeneration. Six normal sighted felines were unilaterally blinded using intravitreal ATP injections and assessed using electroretinography (ERG) and optical coherence tomography (OCT). At 30 h (n = 3) or 12 weeks (n = 3) post-injection, the animals were euthanized and the eyes enucleated. Retinae were sectioned and labeled using immunohistochemistry for markers of cell death, neural remodeling and gliosis. Ongoing cell death and retinal degeneration was observed in the outer retina at both 30 h and 12 weeks following unilateral ATP injection. Markers of mid to late-stage retinal remodeling such as cell displacement and aberrant neurite growth were observed in the inner retina at 12 weeks post-injection. Ganglion cells appeared to remain intact in ATP injected eyes. Müller cell gliosis was observed throughout the inner and outer retina, in some parts completely enveloping and/or displacing the surviving neural tissue. Our data suggests that the ATP injected feline retina continues to undergo progressive retinal degeneration and exhibits abnormalities consistent with a description of retinal remodeling commonly seen in other models of retinal degeneration. These findings validate the use of intravitreal ATP injection in feline as a large animal model of retinal degeneration which may aid in development of therapies aiming to restore visual function after photoreceptor degeneration.

18.
Front Cell Neurosci ; 9: 389, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26500494

RESUMO

Vesicular nucleotide transporter (VNUT) is required for active accumulation of adenosine tri-phosphate (ATP) into vesicles for purinergic neurotransmission, however, the cell types that express VNUT in the central nervous system remain unknown. This study characterized VNUT expression within the mammalian retina and brain and assessed a possible functional role in purinergic signaling. Two native isoforms of VNUT were detected in mouse retina and brain based on RNA transcript and protein analysis. Using immunohistochemistry, VNUT was found to co-localize with tyrosine hydroxylase (TH) positive, dopaminergic (DA) neurons of the substantia nigra and ventral tegmental area, however, VNUT expression in extranigral non-DA neurons was also observed. In the retina, VNUT labeling was found to co-localize solely with TH-positive DA-cells. In the outer retina, VNUT-positive interplexiform cell processes were in close contact with horizontal cells and cone photoreceptor terminals, which are known to express P2 purinergic-receptors. In order to assess function, dissociated retinal neurons were loaded with fluorescent ATP markers (Quinacrine or Mant-ATP) and the DA marker FFN102, co-labeled with a VNUT antibody and imaged in real time. Fluorescent ATP markers and FFN102 puncta were found to co-localize in VNUT positive neurons and upon stimulation with high potassium, ATP marker fluorescence at the cell membrane was reduced. This response was blocked in the presence of cadmium. These data suggest DA neurons co-release ATP via calcium dependent exocytosis and in the retina this may modulate the visual response by activating purine receptors on closely associated neurons.

19.
Physiol Rep ; 3(9)2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26416974

RESUMO

Growth restriction impacts on offspring development and increases their risk of disease in adulthood which is exacerbated with "second hits." The aim of this study was to investigate if blood pressure, glucose tolerance, and skeletal muscle mitochondrial biogenesis were altered in 12-month-old male and female offspring with prenatal or postnatal growth restriction. Bilateral uterine vessel ligation induced uteroplacental insufficiency and growth restriction in offspring (Restricted). A sham surgery was also performed during pregnancy (Control) and some litters from sham mothers had their litter size reduced (Reduced litter), which restricted postnatal growth. Growth-restricted females only developed hypertension at 12 months, which was not observed in males. In Restricted females only homeostasis model assessment for insulin resistance was decreased, indicating enhanced hepatic insulin sensitivity, which was not observed in males. Plasma leptin was increased only in the Reduced males at 12 months compared to Control and Restricted males, which was not observed in females. Compared to Controls, leptin, ghrelin, and adiponectin were unaltered in the Restricted males and females, suggesting that at 12 months of age the reduction in body weight in the Restricted offspring is not a consequence of circulating adipokines. Skeletal muscle PGC-1α levels were unaltered in 12-month-old male and female rats, which indicate improvements in lean muscle mass by 12 months of age. In summary, sex strongly impacts the cardiometabolic effects of growth restriction in 12-month-old rats and it is females who are at particular risk of developing long-term hypertension following growth restriction.

20.
Invest Ophthalmol Vis Sci ; 55(12): 8319-29, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25425300

RESUMO

PURPOSE: To develop and characterize a feline model of retinal degeneration induced by intravitreal injection of adenosine triphosphate (ATP). METHODS: Nineteen normally sighted adult cats received 100 µL intravitreal injections of ATP with a final concentration of 11, 22, or 55 mM at the retina. Four animals were euthanized 30 hours after injection and retinal sections examined for apoptosis using a TUNEL cell death assay. In the remaining animals, structural and functional changes were characterized over a 3-month period using a combination of electroretinography (ERG) and optical coherence tomography (OCT). RESULTS: Using a TUNEL cell death assay, we detected widespread photoreceptor death 30 hours after injection with 55 mM intravitreal ATP. All concentrations of ATP caused loss of retinal function and gross changes in retinal structure within 2 weeks of injection. Intravitreal injection of ATP led to a rapid loss of rod photoreceptor function and a gradual loss of cone photoreceptor function within 3 months. Outer nuclear layer thickness was globally reduced by 3 months, with the inner nuclear layer including the retinal nerve fiber layer remaining intact. Structural abnormalities were observed, including focal retinal detachment with evidence of both intravitreal and intraretinal inflammation in some eyes. CONCLUSIONS: Development of an ATP-induced feline model of retinal degeneration provides a rapid and effective large-eyed animal model for research into vision restoration.


Assuntos
Trifosfato de Adenosina/toxicidade , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Degeneração Retiniana/patologia , Células Fotorreceptoras Retinianas Bastonetes/efeitos dos fármacos , Trifosfato de Adenosina/administração & dosagem , Análise de Variância , Animais , Apoptose/efeitos dos fármacos , Gatos , Modelos Animais de Doenças , Eletrorretinografia/efeitos dos fármacos , Injeções Intravítreas , Células Fotorreceptoras Retinianas Cones/fisiologia , Degeneração Retiniana/induzido quimicamente , Degeneração Retiniana/fisiopatologia , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Tomografia de Coerência Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA