Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Res Pract Thromb Haemost ; 8(3): 102395, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38699410

RESUMO

The University of North Carolina Symposia on Hemostasis began in 2002, with The First Symposium on Hemostasis with a Special Focus on FVIIa and Tissue Factor. They have occurred biannually since and have maintained the primary goal of establishing a forum for the sharing of outstanding advances made in the basic sciences of hemostasis. The 2024 11th Symposium on Hemostasis will bring together leading scientists from around the globe to present and discuss the latest research related to coagulation factors and platelet biology. In keeping with the tradition of the conference, we expect novel cross-disciplinary collaborations to result from bringing together fundamental scientists and physician-scientists from different backgrounds and perspectives. The aim of these collaborations is to springboard the next generation of important advances in the field. This year's program was designed to discuss Coagulation and Platelet Biology at the Intersection of Health and Disease. The goal is to develop a better understanding of the pathophysiologic mechanisms leading to hemostatic and thrombotic disorders as this understanding is critical for the continued development of safe and efficacious therapeutics. Included in this review article are illustrated capsules provided by our speakers that highlight the main conclusions of the invited talks.

2.
Mol Oncol ; 18(1): 113-135, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37971174

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly fatal metastatic disease associated with robust activation of the coagulation and fibrinolytic systems. However, the potential contribution of the primary fibrinolytic protease plasminogen to PDAC disease progression has remained largely undefined. Mice bearing C57Bl/6-derived KPC (KRasG12D , TRP53R172H ) tumors displayed evidence of plasmin activity in the form of high plasmin-antiplasmin complexes and high plasmin generation potential relative to mice without tumors. Notably, plasminogen-deficient mice (Plg- ) had significantly diminished KPC tumor growth in subcutaneous and orthotopic implantation models. Moreover, the metastatic potential of KPC cells was significantly diminished in Plg- mice, which was linked to reduced early adhesion and/or survival of KPC tumor cells. The reduction in primary orthotopic KPC tumor growth in Plg- mice was associated with increased apoptosis, reduced accumulation of pro-tumor immune cells, and increased local proinflammatory cytokine production. Elimination of fibrin(ogen), the primary proteolytic target of plasmin, did not alter KPC primary tumor growth and resulted in only a modest reduction in metastatic potential. In contrast, deficiencies in the plasminogen receptors Plg-RKT or S100A10 in tumor cells significantly reduced tumor growth. Plg-RKT reduction in tumor cells, but not reduced S100A10, suppressed metastatic potential in a manner that mimicked plasminogen deficiency. Finally, tumor growth was also reduced in NSG mice subcutaneously or orthotopically implanted with patient-derived PDAC tumor cells in which circulating plasminogen was pharmacologically reduced. Collectively, these studies suggest that plasminogen promotes PDAC tumor growth and metastatic potential, in part through engaging plasminogen receptors on tumor cells.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Carcinoma Ductal Pancreático/patologia , Fibrinolisina , Neoplasias Pancreáticas/patologia , Plasminogênio
3.
Nat Commun ; 14(1): 6066, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770427

RESUMO

Sampling restrictions have hindered the comprehensive study of invasive non-enhancing (NE) high-grade glioma (HGG) cell populations driving tumor progression. Here, we present an integrated multi-omic analysis of spatially matched molecular and multi-parametric magnetic resonance imaging (MRI) profiling across 313 multi-regional tumor biopsies, including 111 from the NE, across 68 HGG patients. Whole exome and RNA sequencing uncover unique genomic alterations to unresectable invasive NE tumor, including subclonal events, which inform genomic models predictive of geographic evolution. Infiltrative NE tumor is alternatively enriched with tumor cells exhibiting neuronal or glycolytic/plurimetabolic cellular states, two principal transcriptomic pathway-based glioma subtypes, which respectively demonstrate abundant private mutations or enrichment in immune cell signatures. These NE phenotypes are non-invasively identified through normalized K2 imaging signatures, which discern cell size heterogeneity on dynamic susceptibility contrast (DSC)-MRI. NE tumor populations predicted to display increased cellular proliferation by mean diffusivity (MD) MRI metrics are uniquely associated with EGFR amplification and CDKN2A homozygous deletion. The biophysical mapping of infiltrative HGG potentially enables the clinical recognition of tumor subpopulations with aggressive molecular signatures driving tumor progression, thereby informing precision medicine targeting.


Assuntos
Produtos Biológicos , Neoplasias Encefálicas , Glioma , Imageamento por Ressonância Magnética Multiparamétrica , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Homozigoto , Deleção de Sequência , Glioma/diagnóstico por imagem , Glioma/genética , Glioma/patologia , Imageamento por Ressonância Magnética/métodos
4.
J Thromb Haemost ; 21(8): 2175-2188, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37062522

RESUMO

BACKGROUND: Hepatic deposition of cross-linked fibrin(ogen) occurs alongside platelet accumulation as a hallmark of acetaminophen (APAP)-induced liver injury. OBJECTIVES: We sought to define the precise role of the fibrinogen γ-chain C-terminal integrin αIIbß3 binding domain in APAP-induced liver injury. METHODS: Mice expressing mutant fibrinogen incapable of engaging integrin αIIbß3 due to a C-terminal fibrinogen γ-chain truncation (mutant fibrinogen-γΔ5 [FibγΔ5] mice) and wild-type mice were challenged with APAP (300 mg/kg, intraperitoneally). RESULTS: We observed an altered pattern of fibrin(ogen) deposition in the livers of APAP-challenged FibγΔ5 mice. This led to the unexpected discovery that fibrinogen γ-chain cross-linking was altered in the livers of APAP-challenged FibγΔ5 mice compared with that in wild-type mice, including absence of γ-γ dimer and accumulation of larger molecular weight cross-linked γ-chain complexes. This finding was not unique to the injured liver because activation of coagulation did not produce γ-γ dimer in plasma from FibγΔ5 mice or purified FibγΔ5 fibrinogen. Sanger sequencing predicted that the fibrinogen-γΔ5 γ-polypeptide would terminate at lysine residue 406, but liquid chromatography tandem mass spectrometry analysis revealed that this critical lysine residue was absent in purified fibrinogen-γΔ5 protein. Interestingly, hepatic deposition of this uniquely aberrantly cross-linked fibrin(ogen) in FibγΔ5 mice was associated with exacerbated hepatic injury, an effect not recapitulated by pharmacologic inhibition of integrin αIIbß3. CONCLUSION: The results indicate that fibrinogen-γΔ5 lacks critical residues essential to form γ-γ dimer in response to thrombin and suggest that hepatic accumulation of abnormally cross-linked fibrin(ogen) can exacerbate hepatic injury.


Assuntos
Acetaminofen , Doença Hepática Crônica Induzida por Substâncias e Drogas , Animais , Camundongos , Fibrina/metabolismo , Fibrinogênio/genética , Fibrinogênio/metabolismo , Integrinas , Lisina
5.
J Thromb Haemost ; 21(3): 522-533, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36696182

RESUMO

BACKGROUND: Fibrinogen has an established, essential role in both coagulation and inflammatory pathways, and these processes are deeply intertwined in the development of thrombotic and atherosclerotic diseases. Previous studies aimed to better understand the (patho) physiological actions of fibrinogen by characterizing the genomic contribution to circulating fibrinogen levels. OBJECTIVES: Establish an in vitro approach to define functional roles between genes within these loci and fibrinogen synthesis. METHODS: Candidate genes were selected on the basis of their proximity to genetic variants associated with fibrinogen levels and expression in hepatocytes and HepG2 cells. HepG2 cells were transfected with small interfering RNAs targeting candidate genes and cultured in the absence or presence of the proinflammatory cytokine interleukin-6. Effects on fibrinogen protein production, gene expression, and cell growth were assessed by immunoblotting, real-time polymerase chain reaction, and cell counts, respectively. RESULTS: HepG2 cells secreted fibrinogen, and stimulation with interleukin-6 increased fibrinogen production by 3.4 ± 1.2 fold. In the absence of interleukin-6, small interfering RNA knockdown of FGA, IL6R, or EEPD1 decreased fibrinogen production, and knockdown of LEPR, PDIA5, PLEC, SHANK3, or CPS1 increased production. In the presence of interleukin-6, knockdown of FGA, IL6R, or ATXN2L decreased fibrinogen production. Knockdown of FGA, IL6R, EEPD1, LEPR, PDIA5, PLEC, or CPS1 altered transcription of one or more fibrinogen genes. Knocking down ATXN2L suppressed inducible but not basal fibrinogen production via a post-transcriptional mechanism. CONCLUSIONS: We established an in vitro platform to define the impact of select gene products on fibrinogen production. Genes identified in our screen may reveal cellular mechanisms that drive fibrinogen production as well as fibrin(ogen)-mediated (patho)physiological mechanisms.


Assuntos
Fibrinogênio , Hemostáticos , Humanos , Fibrinogênio/metabolismo , Interleucina-6/metabolismo , Expressão Gênica , Hepatócitos/metabolismo , Células Hep G2
6.
J Thromb Haemost ; 20(5): 1182-1192, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35158413

RESUMO

BACKGROUND: The blood coagulation factor fibrin(ogen) can modulate inflammation by altering leukocyte activity. Analyses of fibrin(ogen)-mediated proinflammatory activity have largely focused on leukocyte integrin binding activity revealed by conversion of fibrinogen to a stabilized fibrin polymer by blood coagulation enzymes. In addition to coagulation enzymes, fibrinogen is a substrate for tissue transglutaminase-2 (TG2), a widely expressed enzyme that produces unique fibrinogen Aα-γ chain cross-linked products. OBJECTIVES: We tested the hypothesis that TG2 dependent cross-linking alters the proinflammatory activity of surface-adhered fibrinogen. METHODS: Mouse bone marrow-derived macrophages (BMDMs) were cultured on tissue culture plates coated with fibrinogen or TG2-cross-linked fibrinogen (10 µg/ml) and then stimulated with lipopolysaccharide (LPS, 1 ng/ml) or vehicle for various times. RESULTS: In the absence of LPS stimulation, TG2-cross-linked fibrin(ogen) enhanced inflammatory gene induction (e.g., Tnfα) compared with unmodified fibrinogen. LPS stimulation induced mitogen-activated protein kinase phosphorylation, IκBα degradation, and expression of proinflammatory cytokines (e.g., tumor necrosis factor α) within 60 min. This initial cellular activation was unaffected by unmodified or TG2-cross-linked fibrinogen. In contrast, LPS induction of interleukin-10 mRNA and protein and STAT3 phosphorylation was selectively attenuated by TG2-cross-linked fibrinogen, which was associated with enhanced proinflammatory cytokine secretion by LPS-stimulated BMDMs at later time points (6 and 24 h). CONCLUSIONS: The results indicate that atypical cross-linking by TG2 imparts unique proinflammatory activity to surface-adhered fibrinogen. The results suggest a novel coagulation-independent mechanism controlling fibrinogen-directed macrophage activation.


Assuntos
Lipopolissacarídeos , Proteína 2 Glutamina gama-Glutamiltransferase , Animais , Fibrina/metabolismo , Fibrinogênio/metabolismo , Humanos , Macrófagos/metabolismo , Camundongos , Transglutaminases/genética , Transglutaminases/metabolismo , Fator de Necrose Tumoral alfa
8.
Blood ; 139(9): 1374-1388, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-34905618

RESUMO

Genetic variants within the fibrinogen Aα chain encoding the αC-region commonly result in hypodysfibrinogenemia in patients. However, the (patho)physiological consequences and underlying mechanisms of such mutations remain undefined. Here, we generated Fga270 mice carrying a premature termination codon within the Fga gene at residue 271. The Fga270 mutation was compatible with Mendelian inheritance for offspring of heterozygous crosses. Adult Fga270/270 mice were hypofibrinogenemic with ∼10% plasma fibrinogen levels relative to FgaWT/WT mice, linked to 90% reduction in hepatic Fga messenger RNA (mRNA) because of nonsense-mediated decay of the mutant mRNA. Fga270/270 mice had preserved hemostatic potential in vitro and in vivo in models of tail bleeding and laser-induced saphenous vein injury, whereas Fga-/- mice had continuous bleeding. Platelets from FgaWT/WT and Fga270/270 mice displayed comparable initial aggregation following adenosine 5'-diphosphate stimulation, but Fga270/270 platelets quickly disaggregated. Despite ∼10% plasma fibrinogen, the fibrinogen level in Fga270/270 platelets was ∼30% of FgaWT/WT platelets with a compensatory increase in fibronectin. Notably, Fga270/270 mice showed complete protection from thrombosis in the inferior vena cava stasis model. In a model of Staphylococcus aureus peritonitis, Fga270/270 mice supported local, fibrinogen-mediated bacterial clearance and host survival comparable to FgaWT/WT, unlike Fga-/- mice. Decreasing the normal fibrinogen levels to ∼10% with small interfering RNA in mice also provided significant protection from venous thrombosis without compromising hemostatic potential and antimicrobial function. These findings both reveal novel molecular mechanisms underpinning fibrinogen αC-region truncation mutations and highlight the concept that selective fibrinogen reduction may be efficacious for limiting thrombosis while preserving hemostatic and immune protective functions.


Assuntos
Afibrinogenemia , Plaquetas/metabolismo , Fibrinogênio , Hemostasia/genética , Mutação , Agregação Plaquetária/genética , Trombose , Afibrinogenemia/genética , Afibrinogenemia/metabolismo , Animais , Fibrinogênio/genética , Fibrinogênio/metabolismo , Camundongos , Camundongos Knockout , Trombose/genética , Trombose/metabolismo
9.
Blood ; 139(9): 1302-1311, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-34958662

RESUMO

Fibrinogen plays a pathologic role in multiple diseases. It contributes to thrombosis and modifies inflammatory and immune responses, supported by studies in mice expressing fibrinogen variants with altered function or with a germline fibrinogen deficiency. However, therapeutic strategies to safely and effectively tailor plasma fibrinogen concentration are lacking. Here, we developed a strategy to tune fibrinogen expression by administering lipid nanoparticle (LNP)-encapsulated small interfering RNA (siRNA) targeting the fibrinogen α chain (siFga). Three distinct LNP-siFga reagents reduced both hepatic Fga messenger RNA and fibrinogen levels in platelets and plasma, with plasma levels decreased to 42%, 16%, and 4% of normal within 1 week of administration. Using the most potent siFga, circulating fibrinogen was controllably decreased to 32%, 14%, and 5% of baseline with 0.5, 1.0, and 2.0 mg/kg doses, respectively. Whole blood from mice treated with siFga formed clots with significantly decreased clot strength ex vivo, but siFga treatment did not compromise hemostasis following saphenous vein puncture or tail transection. In an endotoxemia model, siFga suppressed the acute phase response and decreased plasma fibrinogen, D-dimer, and proinflammatory cytokine levels. In a sterile peritonitis model, siFga restored normal macrophage migration in plasminogen-deficient mice. Finally, treatment of mice with siFga decreased the metastatic potential of tumor cells in a manner comparable to that observed in fibrinogen-deficient mice. The results indicate that siFga causes robust and controllable depletion of fibrinogen and provides the proof-of-concept that this strategy can modulate the pleiotropic effects of fibrinogen in relevant disease models.


Assuntos
Afibrinogenemia/metabolismo , Fibrina/biossíntese , Fibrinogênio/biossíntese , Técnicas de Silenciamento de Genes , Lipossomos/farmacologia , RNA Interferente Pequeno , Afibrinogenemia/genética , Animais , Plaquetas/metabolismo , Modelos Animais de Doenças , Feminino , Fibrina/genética , Fibrinogênio/genética , Humanos , Masculino , Camundongos , Nanopartículas , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia
10.
Front Cardiovasc Med ; 8: 768338, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938785

RESUMO

Chronic diseases in growing children, such as autoimmune disorders, obesity, and cancer, are hallmarked by musculoskeletal growth disturbances and osteoporosis. Many of the skeletal changes in these children are thought to be secondary to chronic inflammation. Recent studies have likewise suggested that changes in coagulation and fibrinolysis may contribute to musculoskeletal growth disturbances. In prior work, we demonstrated that mice deficient in plasminogen, the principal protease of degrading and clearing fibrin matrices, suffer from inflammation-driven systemic osteoporosis and that elimination of fibrinogen resulted in normalization of IL-6 levels and complete rescue of the skeletal phenotype. Given the intimate link between coagulation, fibrinolysis, and inflammation, here we determined if persistent fibrin deposition, elevated IL-6, or both contribute to early skeletal aging and physeal disruption in chronic inflammatory conditions. Skeletal growth as well as bone quality, physeal development, and vascularity were analyzed in C57BL6/J mice with plasminogen deficiency with and without deficiencies of either fibrinogen or IL-6. Elimination of fibrinogen, but not IL-6, rescued the skeletal phenotype and growth disturbances in this model of chronic disease. Furthermore, the skeletal phenotypes directly correlated with both systemic and local vascular changes in the skeletal environment. In conclusion, these results suggest that fibrinolysis through plasmin is essential for skeletal growth and maintenance, and is multifactorial by limiting inflammation and preserving vasculature.

11.
Int J Mol Sci ; 22(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066284

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly fatal disease with a 5-year survival rate of less than 10% following diagnosis. The aggressive and invasive properties of pancreatic cancer tumors coupled with poor diagnostic options contribute to the high mortality rate since most patients present with late-stage disease. Accordingly, PDAC is linked to the highest rate of cancer-associated venous thromboembolic disease of all solid tumor malignancies. However, in addition to promoting clot formation, recent studies suggest that the coagulation system in PDAC mediates a reciprocal relationship, whereby coagulation proteases and receptors promote PDAC tumor progression and dissemination. Here, upregulation of tissue factor (TF) by tumor cells can drive local generation of the central coagulation protease thrombin that promotes cell signaling activity through protease-activated receptors (PARs) expressed by both tumor cells and multiple stromal cell subsets. Moreover, the TF-thrombin-PAR1 signaling axis appears to be a major mechanism of cancer progression in general and PDAC in particular. Here, we summarize the current literature regarding the role of PAR1 in PDAC and review possibilities for pharmacologically targeting PAR1 as a PDAC therapeutic approach.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Terapia de Alvo Molecular , Neoplasias Pancreáticas/tratamento farmacológico , Receptor PAR-1/antagonistas & inibidores , Animais , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia
12.
J Thromb Haemost ; 19(10): 2480-2494, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34192410

RESUMO

BACKGROUND: We previously showed that fibrinogen is a major determinant of the growth of a murine model of colorectal cancer (CRC). OBJECTIVE: Our aim was to define the mechanisms coupling fibrin(ogen) to CRC growth. RESULTS: CRC tumors transplanted into the dorsal subcutis of Fib- mice were less proliferative and demonstrated increased senescence relative to those grown in Fib+ mice. RNA-seq analyses of Fib+ and Fib- tumors revealed 213 differentially regulated genes. One gene highly upregulated in tumors from Fib- mice was stratifin, encoding 14-3-3σ, a master regulator of proliferation/senescence. In a separate cohort, we observed significantly increased protein levels of 14-3-3σ and its upstream and downstream targets (i.e., p53 and p21) in tumors from Fib- mice. In vitro analyses demonstrated increased tumor cell proliferation in a fibrin printed three-dimensional environment compared with controls, suggesting that fibrin(ogen) in the tumor microenvironment promotes tumor growth in this context via a tumor cell intrinsic mechanism. In vivo analyses showed diminished activation of focal adhesion kinase (FAK), a key negative regulator of p53, in Fib- tumors. Furthermore, nuclear magnetic resonance-based metabolomics demonstrated significantly reduced metabolic activity in tumors from Fib- relative to Fib+ mice. Together, these findings suggest that fibrin(ogen)-mediated engagement of colon cancer cells activates FAK, which inhibits p53 and its downstream targets including 14-3-3σ and p21, thereby promoting cellular proliferation and preventing senescence. CONCLUSIONS: These studies suggest that fibrin(ogen) is an important component of the colon cancer microenvironment and may be exploited as a potential therapeutic target.


Assuntos
Adenocarcinoma , Neoplasias Colorretais , Fibrinogênio , Quinase 1 de Adesão Focal , Adenocarcinoma/genética , Animais , Neoplasias Colorretais/genética , Hemostáticos , Camundongos , Microambiente Tumoral
13.
Nat Commun ; 12(1): 2911, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006859

RESUMO

The impact of immune mediators on weight homeostasis remains underdefined. Interrogation of resistance to diet-induced obesity in mice lacking a negative regulator of Toll-like receptor signaling serendipitously uncovered a role for B cell activating factor (BAFF). Here we show that overexpression of BAFF in multiple mouse models associates with protection from weight gain, approximating a log-linear dose response relation to BAFF concentrations. Gene expression analysis of BAFF-stimulated subcutaneous white adipocytes unveils upregulation of lipid metabolism pathways, with BAFF inducing white adipose tissue (WAT) lipolysis. Brown adipose tissue (BAT) from BAFF-overexpressing mice exhibits increased Ucp1 expression and BAFF promotes brown adipocyte respiration and in vivo energy expenditure. A proliferation-inducing ligand (APRIL), a BAFF homolog, similarly modulates WAT and BAT lipid handling. Genetic deletion of both BAFF and APRIL augments diet-induced obesity. Lastly, BAFF/APRIL effects are conserved in human adipocytes and higher BAFF/APRIL levels correlate with greater BMI decrease after bariatric surgery. Together, the BAFF/APRIL axis is a multifaceted immune regulator of weight gain and adipose tissue function.


Assuntos
Fator Ativador de Células B/genética , Obesidade/genética , Transdução de Sinais/genética , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Aumento de Peso/genética , Adipócitos/citologia , Adipócitos/metabolismo , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/metabolismo , Animais , Fator Ativador de Células B/metabolismo , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Perfilação da Expressão Gênica/métodos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Obesidade/etiologia , Obesidade/metabolismo , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo
14.
Blood ; 138(3): 259-272, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-33827130

RESUMO

Acetaminophen (APAP)-induced liver injury is associated with activation of coagulation and fibrinolysis. In mice, both tissue factor-dependent thrombin generation and plasmin activity have been shown to promote liver injury after APAP overdose. However, the contribution of the contact and intrinsic coagulation pathways has not been investigated in this model. Mice deficient in individual factors of the contact (factor XII [FXII] and prekallikrein) or intrinsic coagulation (FXI) pathway were administered a hepatotoxic dose of 400 mg/kg of APAP. Neither FXII, FXI, nor prekallikrein deficiency mitigated coagulation activation or hepatocellular injury. Interestingly, despite the lack of significant changes to APAP-induced coagulation activation, markers of liver injury and inflammation were significantly reduced in APAP-challenged high-molecular-weight kininogen-deficient (HK-/-) mice. Protective effects of HK deficiency were not reproduced by inhibition of bradykinin-mediated signaling, whereas reconstitution of circulating levels of HK in HK-/- mice restored hepatotoxicity. Fibrinolysis activation was observed in mice after APAP administration. Western blotting, enzyme-linked immunosorbent assay, and mass spectrometry analysis showed that plasmin efficiently cleaves HK into multiple fragments in buffer or plasma. Importantly, plasminogen deficiency attenuated APAP-induced liver injury and prevented HK cleavage in the injured liver. Finally, enhanced plasmin generation and HK cleavage, in the absence of contact pathway activation, were observed in plasma of patients with acute liver failure due to APAP overdose. In summary, extrinsic but not intrinsic pathway activation drives the thromboinflammatory pathology associated with APAP-induced liver injury in mice. Furthermore, plasmin-mediated cleavage of HK contributes to hepatotoxicity in APAP-challenged mice independently of thrombin generation or bradykinin signaling.


Assuntos
Acetaminofen/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fibrinolisina/metabolismo , Fibrinólise/efeitos dos fármacos , Cininogênios/metabolismo , Proteólise/efeitos dos fármacos , Acetaminofen/farmacologia , Animais , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Fator XII/genética , Fator XII/metabolismo , Feminino , Fibrinolisina/genética , Humanos , Cininogênios/genética , Masculino , Camundongos , Camundongos Knockout , Pré-Calicreína/genética , Pré-Calicreína/metabolismo
15.
Blood Adv ; 5(2): 487-495, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33496742

RESUMO

Pancreatic cancer patients have a high risk of venous thromboembolism (VTE). Plasminogen activator inhibitor 1 (PAI-1) inhibits plasminogen activators and increases the risk of thrombosis. PAI-1 is expressed by pancreatic tumors and human pancreatic cell lines. However, to date, there are no studies analyzing the association of active PAI-1 and VTE in pancreatic cancer patients. We investigated the association of active PAI-1 in plasma and VTE in pancreatic cancer patients. In addition, we determined if the presence of human pancreatic tumors expressing PAI-1 impairs venous thrombus resolution in mice. Plasma levels of active PAI-1 in patients with pancreatic cancer and mice bearing human tumors were determined by enzyme-linked immunosorbent assay. We measured PAI-1 expression in 5 different human pancreatic cancer cell lines and found that PANC-1 cells expressed the highest level. PANC-1 tumors were grown in nude mice. Venous thrombosis was induced by complete ligation of the inferior vena cava (IVC). Levels of active PAI-1 were independently associated with increased risk of VTE in patients with pancreatic cancer (subdistribution hazard ratio per doubling of levels: 1.39 [95% confidence interval, 1.09-1.78], P = .007). Mice bearing PANC-1 tumors had increased levels of both active human and active mouse PAI-1 and decreased levels of plasmin activity. Importantly, mice bearing PANC-1 tumors exhibited impaired venous thrombus resolution 8 days after IVC stasis compared with nontumor controls. Our results suggest that PAI-1 contributes to VTE in pancreatic cancer.


Assuntos
Neoplasias Pancreáticas , Trombose Venosa , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Nus , Neoplasias Pancreáticas/complicações , Inibidor 1 de Ativador de Plasminogênio/genética , Trombose Venosa/etiologia
16.
J Thromb Haemost ; 19(1): 161-172, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33064371

RESUMO

Essentials Elimination of PDAC tumor cell PAR1 increased cytotoxic T cells and reduced tumor macrophages. PAR1KO PDAC cells are preferentially eliminated from growing tumors. Thrombin-PAR1 signaling in PDAC tumor cells drives an immunosuppressive gene signature. Csf2 and Ptgs2 are thrombin-PAR1 downstream immune suppressor genes in PDAC tumor cells. ABSTRACT: Background Pancreatic ductal adenocarcinoma (PDAC) is characterized by a prothrombotic state and a lack of host antitumor immune responsiveness. Linking these two key features, we previously demonstrated that tumor-derived coagulation activity promotes immune evasion. Specifically, thrombin-protease-activated receptor-1 (PAR1) signaling in mouse PDAC cells drives tumor growth by evading cytotoxic CD8a+ cells. Methods Syngeneic mixed cell tumor growth, transcriptional analyses, and functional tests of immunosuppressive response genes were used to identify cellular and molecular immune evasion mechanisms mediated by thrombin-PAR-1 signaling in mouse PDAC tumor cells. Results Elimination of tumor cell PAR1 in syngeneic graft studies increased cytotoxic T lymphocyte (CTL) infiltration and decreased tumor-associated macrophages in the tumor microenvironment. Co-injection of PAR1-expressing and PAR1-knockout (PAR-1KO ) tumor cells into immunocompetent mice resulted in preferential elimination of PAR-1KO cells from developing tumors, suggesting that PAR1-dependent immune evasion is not reliant on CTL exclusion. Transcriptomics analyses revealed no PAR1-dependent changes in the expression of immune checkpoint proteins and no difference in major histocompatibility complex-I cell surface expression. Importantly, thrombin-PAR1 signaling in PDAC cells upregulated genes linked to immunosuppression, including Csf2 and Ptgs2. Functional analyses confirmed that both Csf2 and Ptgs2 are critical for PDAC syngeneic graft tumor growth and overexpression of each factor partially restored tumor growth of PAR1KO cells in immunocompetent mice. Conclusions Our results provide novel insight into the mechanisms of a previously unrecognized pathway coupling coagulation to PDAC immune evasion by identifying PAR1-dependent changes in the tumor microenvironment, a PAR1-driven immunosuppressive gene signature, and Csf2 and Ptgs2 as critical PAR1 downstream targets.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Carcinoma Ductal Pancreático/genética , Camundongos , Neoplasias Pancreáticas/genética , Receptor PAR-1/genética , Transdução de Sinais , Trombina/metabolismo , Microambiente Tumoral
17.
Res Pract Thromb Haemost ; 4(6): 1013-1023, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32864552

RESUMO

BACKGROUND: Western blotting is used to measure protein expression in cells and tissues. Appropriate interpretation of resulting data is contingent upon antibody validation. OBJECTIVES: We assessed several commercial anti-human and anti-mouse tissue factor (TF) antibodies for their ability to detect TF by western blotting. MATERIAL AND METHODS: We used human pancreatic cancer cell lines expressing different levels of TF and a mouse pancreatic cancer cell line expressing TF with a matched knockout derivative. RESULTS: Human and mouse TF protein detected by western blotting correlated with levels of TF mRNA in these cell lines. The apparent molecular weight of TF is increased by N-linked glycosylation and, as expected, deglycosylation decreased the size of TF based on western blotting. We found that four commercial anti-human TF antibodies detected TF in a TF-positive cell line HPAF-II whereas no signal was observed in a TF-negative cell line MIA PaCa-2. More variability was observed in detecting mouse TF. Two anti-mouse TF antibodies detected mouse TF in a TF-positive cell line and no signal was observed in a TF knockout cell line. However, a third anti-mouse TF antibody detected a nonspecific protein in both the mouse TF-positive and TF-negative cell lines. Two anti-human TF antibodies that are claimed to cross react with mouse TF either recognized a nonspecific band or did not detect mouse TF. DISCUSSION: Our results indicate that there is a range in quality of commercial anti-TF antibodies. CONCLUSION: We recommend that all commercial antibodies should be validated to ensure that they detect TF.

18.
Mater Today Adv ; 82020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34541484

RESUMO

Development of biomaterials mimicking tumor and its microenvironment has recently emerged for the use of drug discovery, precision medicine, and cancer biology. These biomimetic models have developed by reconstituting tumor and stroma cells within the 3D extracellular matrix. The models are recently extended to recapitulate the in vivo tumor microenvironment, including biological, chemical, and mechanical conditions tailored for specific cancer type and its microenvironment. In spite of the recent emergence of various innovative engineered tumor models, many of these models are still early stage to be adapted for cancer research. In this article, we review the current status of biomaterials engineering for tumor models considering three main aspects - cellular engineering, matrix engineering, and engineering for microenvironmental conditions. Considering cancer-specific variability in these aspects, our discussion is focused on pancreatic cancer, specifically pancreatic ductal adenocarcinoma (PDAC). In addition, we further discussed the current challenges and future opportunities to create reliable and relevant tumor models.

19.
Semin Thromb Hemost ; 45(6): 559-568, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31382306

RESUMO

Pathological activation of the coagulation system occurs with virtually all forms of cancer, particularly epithelial malignancies. Accordingly, thrombosis is one of the most common comorbidities associated with cancer. Indeed, cancer-associated thromboembolism is the second leading cause of death for cancer patients, second only to the cancer itself. The identification of specific molecular mechanisms whereby tumor cells activate the coagulation system and drive thrombosis has been an active area of investigation for several decades. Studies in animal models and human trials have revealed that there is a bidirectional relationship between coagulation factor activity and cancer, whereby the pathological hemostatic system activation associated with cancer not only promotes thromboembolism but also drives progression of the malignancy. Numerous studies indicate that factors up and down the clotting cascade can contribute to various stages of cancer, including tumorigenesis, primary tumor growth, and metastasis. Although there are some mechanistic points of commonality, there are also clearly context-dependent contributions of coagulation components to cancer progression dependent on the type of cancer and stage of disease. It is also notable that in some instances, coagulation factors appear to contribute to cancer progression independently of their traditional roles in hemostasis and thrombosis. Here, the authors review the current state of the field with regard to hemostatic factor-driven cancer pathogenesis.


Assuntos
Neoplasias/complicações , Trombose/etiologia , Humanos
20.
Blood ; 134(3): 291-303, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31101623

RESUMO

Efficient migration of macrophages to sites of inflammation requires cell surface-bound plasmin(ogen). Here, we investigated the mechanisms underlying the deficits of plasmin(ogen)-mediated macrophage migration in 2 models: murine thioglycollate-induced peritonitis and in vitro macrophage migration. As previously reported, macrophage migration into the peritoneal cavity of mice in response to thioglycollate was significantly impaired in the absence of plasminogen. Fibrin(ogen) deposition was noted in the peritoneal cavity in response to thioglycollate, with a significant increase in fibrin(ogen) in the plasminogen-deficient mice. Interestingly, macrophage migration was restored in plasminogen-deficient mice by simultaneous imposition of fibrinogen deficiency. Consistent with this in vivo finding, chemotactic migration of cultured macrophages through a fibrin matrix did not occur in the absence of plasminogen. The macrophage requirement for plasmin-mediated fibrinolysis, both in vivo and in vitro, was negated by deletion of the major myeloid integrin αMß2-binding motif on the γ chain of fibrin(ogen). The study identifies a critical role of fibrinolysis in macrophage migration, presumably through the alleviation of migratory constraints imposed by the interaction of leukocytes with fibrin(ogen) through the integrin αMß2 receptor.


Assuntos
Quimiotaxia de Leucócito , Fibrinolisina/metabolismo , Fibrinólise , Inflamação/etiologia , Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Animais , Biomarcadores , Quimiotaxia de Leucócito/imunologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Fibrinogênio/genética , Fibrinogênio/metabolismo , Imunofluorescência , Humanos , Imunofenotipagem , Inflamação/patologia , Contagem de Leucócitos , Camundongos , Camundongos Knockout , Plasminogênio/deficiência , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA