Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 7225, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-31076594

RESUMO

With the rise of antimicrobial resistance, novel ways to treat bacterial infections are required and the use of predatory bacteria may be one such approach. Bdellovibrio species have been shown in vitro to predate on a wide range of other Gram-negative bacteria, including CDC category A/B pathogens such as Yersinia pestis. The data reported here show that treatment of SKH-1 mice with Bdellovibrio bacteriovorus HD100 provided significant protection from a lethal challenge of Yersinia pestis CO92. This is the first report of protection conferred by predation in vivo against a systemic pathogen challenge. However, this protective effect was not observed in a preliminary study with Balb/c mice. Therefore the effects of the predatory bacteria are complex and may be dependent on immune status/genetics of the host. Overall, predatory bacteria may have utility as a therapeutic modality but further work is required to understand the predator-host interaction.


Assuntos
Bdellovibrio bacteriovorus/fisiologia , Peste/prevenção & controle , Yersinia pestis/patogenicidade , Animais , Modelos Animais de Doenças , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Imagem Óptica , Fagocitose , Peste/microbiologia , Peste/patologia
2.
PLoS One ; 13(10): e0200213, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30296254

RESUMO

Francisella tularensis is an intracellular pathogen causing the disease tularemia, and an organism of concern to biodefence. There is no licensed vaccine available. Subunit approaches have failed to induce protection, which requires both humoral and cellular immune memory responses, and have been hampered by a lack of understanding as to which antigens are immunoprotective. We undertook a preliminary in silico analysis to identify candidate protein antigens. These antigens were then recombinantly expressed and encapsulated into glucan particles (GPs), purified Saccharomyces cerevisiae cell walls composed primarily of ß-1,3-glucans. Immunological profiling in the mouse was used to down-selection to seven lead antigens: FTT1043 (Mip), IglC, FTT0814, FTT0438, FTT0071 (GltA), FTT0289, FTT0890 (PilA) prior to transitioning their evaluation to a Fischer 344 rat model for efficacy evaluation. F344 rats were vaccinated with the GP protein antigens co-delivered with GP-loaded with Francisella LPS. Measurement of cell mediated immune responses and computational epitope analysis allowed down-selection to three promising candidates: FTT0438, FTT1043 and FTT0814. Of these, a GP vaccine delivering Francisella LPS and the FTT0814 protein was able to induce protection in rats against an aerosol challenge of F. tularensis SchuS4, and reduced organ colonisation and clinical signs below that which immunisation with a GP-LPS alone vaccine provided. This is the first report of a protein supplementing protection induced by LPS in a Francisella vaccine. This paves the way for developing an effective, safe subunit vaccine for the prevention of inhalational tularemia, and validates the GP platform for vaccine delivery where complex immune responses are required for prevention of infections by intracellular pathogens.


Assuntos
Vacinas Bacterianas/imunologia , Francisella tularensis , Glucanos/química , Tularemia/prevenção & controle , Animais , Técnicas de Cocultura , Glucanos/administração & dosagem , Imunidade Celular , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ratos , Ratos Endogâmicos F344 , Saccharomyces cerevisiae , Tularemia/imunologia , Vacinas Atenuadas/imunologia , Vacinas de Subunidades Antigênicas/imunologia
3.
Peptides ; 43: 96-101, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23500517

RESUMO

Early activation of the innate immune response is important for protection against infection with Francisella tularensis live vaccine strain (LVS) in mice. The human cathelicidin antimicrobial peptide LL-37 is known to have immunomodulatory properties, and therefore exogenously administered LL-37 may be suitable as an early post-exposure therapy to protect against LVS infection. LL-37 has been evaluated for immunostimulatory activity in uninfected mice and for activity against LVS in macrophage assays and protective efficacy when administered post-challenge in a mouse model of respiratory tularemia. Increased levels of pro-inflammatory cytokine IL-6, chemokines monocyte chemoattractant protein 1 (MCP-1) and CXCL1 with increased neutrophil influx into the lungs were observed in uninfected mice after intranasal administration of LL-37. Following LVS challenge, LL-37 administration resulted in increased IL-6, IL-12 p70, IFNγ and MCP-1 production, a slowing of LVS growth in the lung, and a significant extension of mean time to death compared to control mice. However, protection was transient, with the LL-37 treated mice eventually succumbing to infection. As this short course of nasally delivered LL-37 was moderately effective at overcoming the immunosuppressive effects of LVS infection this suggests that a more sustained treatment regimen may be an effective therapy against this pathogen.


Assuntos
Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Tularemia/tratamento farmacológico , Administração Intranasal , Animais , Peptídeos Catiônicos Antimicrobianos/administração & dosagem , Peptídeos Catiônicos Antimicrobianos/química , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Francisella tularensis/efeitos dos fármacos , Francisella tularensis/imunologia , Imunomodulação , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Relação Estrutura-Atividade , Tularemia/imunologia , Catelicidinas
4.
Infect Immun ; 70(3): 1653-6, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11854261

RESUMO

The immunogenicity and protective efficacy of overlapping regions of the protective antigen (PA) polypeptide, cloned and expressed as glutathione S-transferase fusion proteins, have been assessed. Results show that protection can be attributed to individual domains and imply that it is domain 4 which contains the dominant protective epitopes of PA.


Assuntos
Vacinas contra Antraz/imunologia , Antraz/prevenção & controle , Antígenos de Bactérias , Toxinas Bacterianas/imunologia , Vacinação , Animais , Antraz/mortalidade , Feminino , Camundongos , Fragmentos de Peptídeos/imunologia , Estrutura Terciária de Proteína , Vacinas Sintéticas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA