Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167014, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38171451

RESUMO

Swim training has increased the life span of the transgenic animal model of amyotrophic lateral sclerosis (ALS). Conversely, the progress of the disease is associated with the impairment of iron metabolism and insulin signaling. We used transgenic hmSOD1 G93A (ALS model) and non-transgenic mice in the present study. The study was performed on the muscles taken from trained (ONSET and TERMINAL) and untrained animals at three stages of the disease: BEFORE, ONSET, and TERMINAL. In order to study the molecular mechanism of changes in iron metabolism, we used SH-SY5Y and C2C12 cell lines expression vector pcDNA3.1 and transiently transfected with specific siRNAs. The progress of ALS resulted in decreased P-Akt/Akt ratio, which is associated with increased proteins responsible for iron storage ferritin L, ferritin H, PCBP1, and skeletal muscle iron at ONSET. Conversely, proteins responsible for iron export- TAU significantly decrease. The training partially reverses changes in proteins responsible for iron metabolism. AKT silencing in the SH-SY5Y cell line decreased PCBP2 and ferroportin and increased ferritin L, H, PCBP1, TAU, transferrin receptor 1, and APP. Moreover, silencing APP led to an increase in ferritin L and H. Our data suggest that swim training in the mice ALS model is associated with significant changes in iron metabolism related to AKT activity. Down-regulation of AKT mainly upregulates proteins involved in iron import and storage but decreases proteins involved in iron export.


Assuntos
Esclerose Lateral Amiotrófica , Neuroblastoma , Camundongos , Animais , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Superóxido Dismutase-1/metabolismo , Transdução de Sinais , Ferro/metabolismo , Modelos Animais de Doenças , Ferritinas/metabolismo , Proteínas de Ligação a RNA/metabolismo
2.
Sci Rep ; 12(1): 1825, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115578

RESUMO

Vitamin D is necessary for musculoskeletal health, however, the supplementation of vitamin D above the sufficiency level does not bring additional bone mass density (BMD), unlike physical exercise which enhances the bone formatting process. Regular physical activity has been shown to upregulate VDR expression in muscles and to increase circulating vitamin D. Here we investigate whether a single bout of exercise might change 25(OH)D3 blood concentration and how it affects metabolic response to exercise. Twenty-six boys, 13.8 years old (SD ± 0.7) soccer players, participated in the study. The participants performed one of two types of exercise: the first group performed the VO2max test until exhaustion, and the second performed three times the repeated 30 s Wingate Anaerobic Test (WAnT). Blood was collected before, 15 min and one hour after the exercise. The concentration of 25(OH)D3, parathyroid hormone (PTH), interleukin-6 (IL-6), lactate, non-esterified fatty acids (NEFA) and glycerol were determined. 25(OH)D3 concentration significantly increased after the exercise in all boys. The most prominent changes in 25(OH)D3, observed after WAnT, were associated with the rise of PTH. The dimensions of response to the exercises observed through the changes in the concentration of 25(OH)D3, PTH, NEFA and glycerol were associated with the significant increases of IL-6 level. A single bout of exercise may increase the serum's 25(OH)D3 concentration in young trained boys. The intensive interval exercise brings a more potent stimulus to vitamin D fluctuations in young organisms. Our results support the hypothesis that muscles may both store and release 25(OH)D3.


Assuntos
Calcifediol/sangue , Exercício Físico/fisiologia , Músculo Esquelético/fisiologia , Hormônio Paratireóideo/sangue , Aptidão Física/fisiologia , Adolescente , Atletas , Ácidos Graxos não Esterificados/sangue , Glicerol/sangue , Humanos , Interleucina-6/sangue , Ácido Láctico/sangue , Masculino , Projetos Piloto , Testes de Função Respiratória
3.
Sci Rep ; 11(1): 20899, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686697

RESUMO

We tested the hypothesis that swim training reverses the impairment of Akt/FOXO3a signaling, ameliorating muscle atrophy in ALS mice. Transgenic male mice B6SJL-Tg (SOD1G93A) 1Gur/J were used as the ALS model (n = 35), with wild-type B6SJL (WT) mice as controls (n = 7). ALS mice were analyzed before ALS onset, at ALS onset, and at terminal ALS. Levels of insulin/Akt signaling pathway proteins were determined, and the body and tibialis anterior muscle mass and plasma creatine kinase. Significantly increased levels of FOXO3a in ALS groups (from about 13 to 21-fold) compared to WT mice were observed. MuRF1 levels in the ONSET untrained group (12.0 ± 1.7 AU) were significantly higher than in WT mice (1.12 ± 0.2 AU) and in the BEFORE ALS group (3.7 ± 0.9 AU). This was associated with body mass and skeletal muscle mass reduction. Swim training significantly ameliorated the reduction of skeletal muscle mass in both TERMINAL groups (p < 0.001) and partially reversed changes in the levels of Akt signaling pathway proteins. These findings shed light on the swimming-induced attenuation of skeletal muscle atrophy in ALS with possible practical implications for anti-cachexia approaches.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/fisiopatologia , Músculo Esquelético/fisiologia , Atrofia Muscular/fisiopatologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Natação/fisiologia , Animais , Modelos Animais de Doenças , Proteína Forkhead Box O3/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Superóxido Dismutase-1/metabolismo , Proteínas com Motivo Tripartido/metabolismo
4.
Oxid Med Cell Longev ; 2019: 6835341, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31281588

RESUMO

Recent studies show that vitamin D deficiency may be responsible for muscle atrophy. The purpose of this study was to investigate markers of muscle atrophy, signalling proteins, and mitochondrial capacity in patients with chronic low back pain with a focus on gender and serum vitamin D level. The study involved patients with chronic low back pain (LBP) qualified for posterior lumbar interbody fusion (PLIF). Patients were divided into three groups: supplemented (SUPL) with vitamin D (3200 IU/day for 5 weeks), placebo with normal levels of vitamin D (SUF), and the placebo group with vitamin D deficiency (DEF). The marker of muscle atrophy including atrogin-1 and protein content for IGF-1, Akt, FOXO3a, PGC-1α, and citrate synthase (CS) activity were determined in collected multifidus muscle. In the paraspinal muscle, IGF-1 levels were higher in the SUF group as compared to both the SUPL and DEF groups (p < 0.05). In the SUPL group, we found significantly increased protein content for pAkt (p < 0.05) and decreased level of FOXO3a (p < 0.05). Atrogin-1 content was significantly different between men and women (p < 0.05). The protein content of PGC-1α was significantly higher in the SUF group as compared to the DEF group (p < 0.05). CS activity in the paraspinal muscle was higher in the SUPL group than in the DEF group (p < 0.05). Our results suggest that vitamin D deficiency is associated with elevated oxidative stress, muscle atrophy, and reduced mitochondrial function in the multifidus muscle. Therefore, vitamin D-deficient LBP patients might have reduced possibilities on early and effective rehabilitation after PLIF surgery.


Assuntos
Dor Lombar/etiologia , Mitocôndrias/metabolismo , Deficiência de Vitamina D/complicações , Doença Crônica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Atrofia Muscular
5.
Front Pharmacol ; 10: 527, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191300

RESUMO

The aim of this experimental study was to assess whether 5 weeks of preoperative supplementation with vitamin D affects the intensity of pain and the level of inflammatory markers in patients undergoing posterior lumbar interbody fusion (PLIF) followed by rehabilitation. 42 patients were divided, by double-blind randomization, into two groups: supplemented (SUPL) vitamin D (3200 IU dose of vitamin D/day for 5 weeks) and placebo group (PL) treated with vegetable oil. The 10-week program of early rehabilitation (3 times a week) was initiated 4 weeks following PLIF. Measurements of serum 25(OH)D3 and CRP, IL-6, TNF-α, and IL-10 were performed. Pain intensity was measured using VAS. After supplementation with vitamin D serum, the concentration of 25(OH)D3 significantly increased in the SUPL group (∗ p < 0.005) and was significantly higher as compared to the PL group (∗ p < 0.001). A significant reduction in pain intensity was observed 4 weeks after surgery and after rehabilitation in both groups. In the SUPL group, serum CRP and IL-6 concentration significantly decreased after rehabilitation, compared with the postsurgical level (a p < 0.04). The level of TNF-α was significantly lower after rehabilitation only in the supplemented group (∗ p < 0.02). There were no significant changes in the IL-10 level in both groups during the study. Our data indicate that supplementation with vitamin D may reduce systemic inflammation and when combined with surgery and early postsurgical rehabilitation, it may decrease the intensity of pain in LBP patients undergoing PLIF. Data indicate that LBP patients undergoing spine surgery should use vitamin D perioperatively as a supplement.

6.
Int J Mol Sci ; 19(12)2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30487387

RESUMO

Melatonin (Mel) is the major biologically active molecule secreted by the pineal gland. Mel and its metabolites, 6-hydroxymelatonin (6(OH)Mel) and 5-methoxytryptamine (5-MT), possess a variety of functions, including the scavenging of free radicals and the induction of protective or reparative mechanisms in the cell. Their amphiphilic character allows them to cross cellular membranes and reach subcellular organelles, including the mitochondria. Herein, the action of Mel, 6(OH)Mel, and 5-MT in human MNT-1 melanoma cells against ultraviolet B (UVB) radiation was investigated. The dose of 50 mJ/cm² caused a significant reduction of cell viability up to 48%, while investigated compounds counteracted this deleterious effect. UVB exposure increased catalase activity and led to a simultaneous Ca++ influx (16%), while tested compounds prevented these disturbances. Additional analysis focused on mitochondrial respiration performed in isolated mitochondria from the liver of BALB/cJ mice where Mel, 6(OH)Mel, and 5-MT significantly enhanced the oxidative phosphorylation at the dose of 10-6 M with lower effects seen at 10-9 or 10-4 M. In conclusion, Mel, 6(OH)Mel and 5-MT protect MNT-1 cells, which express melatonin receptors (MT1 and MT2) against UVB-induced oxidative stress and mitochondrial dysfunction, including the uncoupling of oxidative phosphorylation.


Assuntos
Melanoma/metabolismo , Melatonina/metabolismo , Melatonina/farmacologia , 5-Metoxitriptamina/farmacologia , Animais , Cálcio/metabolismo , Catalase/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos da radiação , Melatonina/análogos & derivados , Camundongos Endogâmicos BALB C , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Fosforilação Oxidativa/efeitos dos fármacos , Fosforilação Oxidativa/efeitos da radiação , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Raios Ultravioleta
7.
J Nutr Sci Vitaminol (Tokyo) ; 59(3): 232-7, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23883694

RESUMO

Continuous positive energy imbalance leads to obesity, which increases the risk of developing non-alcoholic fatty liver disease. The hepatoprotective effect of ethyl pyruvate has been revealed in several studies. Therefore, we examined the effect of ethyl pyruvate supplementation on liver cell damage, metabolism, membrane fluidity, and oxidative stress markers in rats fed a high-fat diet. After 6-wk feeding of a control or high-fat diet, Wistar rats were divided into 4 groups: control diet, control diet and ethyl pyruvate, high-fat diet, and high-fat diet and ethyl pyruvate. Ethyl pyruvate was administered as a 0.3% solution in drinking water, for the following 6 wk. Ethyl pyruvate intake attenuated the increase in activities of plasma transaminases and liver TNF-α. However, the supplementation was without effect in the lipid profiles, membrane fluidity or oxidative metabolism in liver induced by the high-fat diet. Our data confirm the potency of ethyl pyruvate against cell liver damage. Nevertheless, prolonged intake did not affect the development of a fatty liver.


Assuntos
Gorduras na Dieta/efeitos adversos , Suplementos Nutricionais , Fígado Gorduroso , Fígado/efeitos dos fármacos , Piruvatos/farmacologia , Transaminases/sangue , Fator de Necrose Tumoral alfa/metabolismo , Animais , Biomarcadores/metabolismo , Membrana Celular/efeitos dos fármacos , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Hepatopatia Gordurosa não Alcoólica , Obesidade/complicações , Estresse Oxidativo/efeitos dos fármacos , Piruvatos/uso terapêutico , Ratos , Ratos Wistar
8.
Xenobiotica ; 43(12): 1103-10, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23713974

RESUMO

The effect of different permethrin treatments on the redox system of rat liver, is presented. Two types of oral administration were chosen: (i) sub-chronic treatment (1/10 of LD50 for 60 days) during adolescence (5 weeks old) and (ii) sub-acute treatment (1/44 of LD50 for 15 days) during early life (from postnatal days 6-21). The results show that adolescent permethrin treatment induces damage to the liver redox system, increasing lipid and protein peroxidation and reducing membrane fluidity in the hydrophilic--hydrophobic region of the bilayer. In addition, glutathione peroxidase (GPx) and GSH levels resulted decreased, while glutathione transferase (GST) and catalase (CAT) levels increased. The rats treated in early life with permethrin and sacrificed in adult age, showed less signs of damage compared to those exposed during adolescence in which lipid peroxidation was increased by 32%, whereas for the first group the raise was only 11%. Moreover, fluidity improved in the deeper hydrophobic membrane region of the treated group, while the level of CAT was significantly lower compared to the control one. Although sub-chronic treatment increased CAT and GST and decreased GPx and GSH levels, the present data suggest that a shorter exposure to permethrin during neonatal age decreased CAT level and it could represent an important risk factor for the onset of long-term liver damage.


Assuntos
Envelhecimento/metabolismo , Fígado/metabolismo , Permetrina/farmacologia , Envelhecimento/efeitos dos fármacos , Animais , Anisotropia , Antioxidantes/metabolismo , Peso Corporal/efeitos dos fármacos , Feminino , Fluorescência , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Fluidez de Membrana/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Carbonilação Proteica/efeitos dos fármacos , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA