Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 3998, 2022 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-35810180

RESUMO

Basic processes of the fatty acid metabolism have an important impact on the function of intestinal epithelial cells (IEC). However, while the role of cellular fatty acid oxidation is well appreciated, it is not clear how de novo fatty acid synthesis (FAS) influences the biology of IECs. We report here that interfering with de novo FAS by deletion of the enzyme Acetyl-CoA-Carboxylase (ACC)1 in IECs results in the loss of epithelial crypt structures and a specific decline in Lgr5+ intestinal epithelial stem cells (ISC). Mechanistically, ACC1-mediated de novo FAS supports the formation of intestinal organoids and the differentiation of complex crypt structures by sustaining the nuclear accumulation of PPARδ/ß-catenin in ISCs. The dependency of ISCs on cellular de novo FAS is tuned by the availability of environmental lipids, as an excess delivery of external fatty acids is sufficient to rescue the defect in crypt formation. Finally, inhibition of ACC1 reduces the formation of tumors in colitis-associated colon cancer, together highlighting the importance of cellular lipogenesis for sustaining ISC function and providing a potential perspective to colon cancer therapy.


Assuntos
Acetil-CoA Carboxilase , Lipogênese , Acetilcoenzima A/metabolismo , Acetil-CoA Carboxilase/metabolismo , Ácidos Graxos/metabolismo , Lipogênese/fisiologia , Células-Tronco/metabolismo
2.
Cell Res ; 32(1): 72-88, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34702947

RESUMO

It remains largely unclear how thymocytes translate relative differences in T cell receptor (TCR) signal strength into distinct developmental programs that drive the cell fate decisions towards conventional (Tconv) or regulatory T cells (Treg). Following TCR activation, intracellular calcium (Ca2+) is the most important second messenger, for which the potassium channel K2P18.1 is a relevant regulator. Here, we identify K2P18.1 as a central translator of the TCR signal into the thymus-derived Treg (tTreg) selection process. TCR signal was coupled to NF-κB-mediated K2P18.1 upregulation in tTreg progenitors. K2P18.1 provided the driving force for sustained Ca2+ influx that facilitated NF-κB- and NFAT-dependent expression of FoxP3, the master transcription factor for Treg development and function. Loss of K2P18.1 ion-current function induced a mild lymphoproliferative phenotype in mice, with reduced Treg numbers that led to aggravated experimental autoimmune encephalomyelitis, while a gain-of-function mutation in K2P18.1 resulted in increased Treg numbers in mice. Our findings in human thymus, recent thymic emigrants and multiple sclerosis patients with a dominant-negative missense K2P18.1 variant that is associated with poor clinical outcomes indicate that K2P18.1 also plays a role in human Treg development. Pharmacological modulation of K2P18.1 specifically modulated Treg numbers in vitro and in vivo. Finally, we identified nitroxoline as a K2P18.1 activator that led to rapid and reversible Treg increase in patients with urinary tract infections. Conclusively, our findings reveal how K2P18.1 translates TCR signals into thymic T cell fate decisions and Treg development, and provide a basis for the therapeutic utilization of Treg in several human disorders.


Assuntos
Canais de Potássio , Receptores de Antígenos de Linfócitos T , Linfócitos T Reguladores , Animais , Diferenciação Celular , Fatores de Transcrição Forkhead , Humanos , Camundongos , NF-kappa B , Timócitos , Timo
3.
Sci Immunol ; 6(65): eabf3111, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34797691

RESUMO

Medullary thymic epithelial cells (mTECs) are key antigen-presenting cells mediating T cell tolerance to prevent harmful autoimmunity. mTECs both negatively select self-reactive T cells and promote the development of thymic regulatory T cells (tTregs) that mediate peripheral tolerance. The relative importance of these two mechanisms of thymic education to prevent autoimmunity is unclear. We generated a mouse model to specifically target the development and function of mTECs by conditional ablation of the NF-κB­inducing kinase (NIK) in the TEC compartment. In contrast to germline-deficient NIK−/− mice, Foxn1CreNIKfl/fl mice rapidly developed fatal T cell­dependent multiorgan autoimmunity shortly after birth. Thymic transplantation and adoptive transfer experiments demonstrated that autoimmunity arises specifically from the emergence of dysfunctional tTregs. Thus, Treg function, rather than negative selection, enforces the protection of peripheral tissues from autoimmune attack.


Assuntos
Autoimunidade , Células Epiteliais/imunologia , Fatores de Transcrição Forkhead/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Linfócitos T Reguladores/imunologia , Timo/imunologia , Animais , Humanos , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Serina-Treonina Quinases/deficiência , Timo/citologia , Quinase Induzida por NF-kappaB
4.
Cell Rep ; 29(13): 4447-4459.e6, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31875552

RESUMO

Forkhead box protein P3+ (FOXP3+) regulatory T cells (Treg cells) play a key role in maintaining tolerance and immune homeostasis. Here, we report that a T cell-specific deletion of the transcription factor MAZR (also known as PATZ1) leads to an increased frequency of Treg cells, while enforced MAZR expression impairs Treg cell differentiation. Further, MAZR expression levels are progressively downregulated during thymic Treg cell development and during in-vitro-induced human Treg cell differentiation, suggesting that MAZR protein levels are critical for controlling Treg cell development. However, MAZR-deficient Treg cells show only minor transcriptional changes ex vivo, indicating that MAZR is not essential for establishing the transcriptional program of peripheral Treg cells. Finally, the loss of MAZR reduces the clinical score in dextran-sodium sulfate (DSS)-induced colitis, suggesting that MAZR activity in T cells controls the extent of intestinal inflammation. Together, these data indicate that MAZR is part of a Treg cell-intrinsic transcriptional network that modulates Treg cell development.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Repressoras/metabolismo , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/metabolismo , Animais , Diferenciação Celular , Colite/imunologia , Sulfato de Dextrana , Humanos , Camundongos Knockout , Timo/citologia , Transcrição Gênica
5.
Cell Rep ; 26(7): 1854-1868.e5, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30759395

RESUMO

Foxp3+ regulatory T (Treg) cells restrict immune pathology in inflamed tissues; however, an inflammatory environment presents a threat to Treg cell identity and function. Here, we establish a transcriptional signature of central nervous system (CNS) Treg cells that accumulate during experimental autoimmune encephalitis (EAE) and identify a pathway that maintains Treg cell function and identity during severe inflammation. This pathway is dependent on the transcriptional regulator Blimp1, which prevents downregulation of Foxp3 expression and "toxic" gain-of-function of Treg cells in the inflamed CNS. Blimp1 negatively regulates IL-6- and STAT3-dependent Dnmt3a expression and function restraining methylation of Treg cell-specific conserved non-coding sequence 2 (CNS2) in the Foxp3 locus. Consequently, CNS2 is heavily methylated when Blimp1 is ablated, leading to a loss of Foxp3 expression and severe disease. These findings identify a Blimp1-dependent pathway that preserves Treg cell stability in inflamed non-lymphoid tissues.


Assuntos
Metilação de DNA , Encefalomielite Autoimune Experimental/imunologia , Fatores de Transcrição Forkhead/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/imunologia , Linfócitos T Reguladores/imunologia , Animais , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferases/imunologia , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Epigênese Genética , Feminino , Fatores de Transcrição Forkhead/biossíntese , Fatores de Transcrição Forkhead/imunologia , Impressão Genômica , Interleucina-6/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/metabolismo
6.
J Allergy Clin Immunol ; 143(4): 1496-1512.e11, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30240703

RESUMO

BACKGROUND: Transmaternal exposure to tobacco, microbes, nutrients, and other environmental factors shapes the fetal immune system through epigenetic processes. The gastric microbe Helicobacter pylori represents an ancestral constituent of the human microbiota that causes gastric disorders on the one hand and is inversely associated with allergies and chronic inflammatory conditions on the other. OBJECTIVE: Here we investigate the consequences of transmaternal exposure to H pylori in utero and/or during lactation for susceptibility to viral and bacterial infection, predisposition to allergic airway inflammation, and development of immune cell populations in the lungs and lymphoid organs. METHODS: We use experimental models of house dust mite- or ovalbumin-induced airway inflammation and influenza A virus or Citrobacter rodentium infection along with metagenomics analyses, multicolor flow cytometry, and bisulfite pyrosequencing, to study the effects of H pylori on allergy severity and immunologic and microbiome correlates thereof. RESULTS: Perinatal exposure to H pylori extract or its immunomodulator vacuolating cytotoxin confers robust protective effects against allergic airway inflammation not only in first- but also second-generation offspring but does not increase susceptibility to viral or bacterial infection. Immune correlates of allergy protection include skewing of regulatory over effector T cells, expansion of regulatory T-cell subsets expressing CXCR3 or retinoic acid-related orphan receptor γt, and demethylation of the forkhead box P3 (FOXP3) locus. The composition and diversity of the gastrointestinal microbiota is measurably affected by perinatal H pylori exposure. CONCLUSION: We conclude that exposure to H pylori has consequences not only for the carrier but also for subsequent generations that can be exploited for interventional purposes.


Assuntos
Infecções por Helicobacter/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Efeitos Tardios da Exposição Pré-Natal/microbiologia , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/microbiologia , Linfócitos T Reguladores/imunologia , Animais , Feminino , Tolerância Imunológica/imunologia , Camundongos Endogâmicos C57BL , Gravidez
7.
Immunity ; 47(6): 1067-1082.e12, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29246441

RESUMO

Roquin proteins preclude spontaneous T cell activation and aberrant differentiation of T follicular helper (Tfh) or T helper 17 (Th17) cells. Here we showed that deletion of Roquin-encoding alleles specifically in regulatory T (Treg) cells also caused the activation of conventional T cells. Roquin-deficient Treg cells downregulated CD25, acquired a follicular Treg (Tfr) cell phenotype, and suppressed germinal center reactions but could not protect from colitis. Roquin inhibited the PI3K-mTOR signaling pathway by upregulation of Pten through interfering with miR-17∼92 binding to an overlapping cis-element in the Pten 3' UTR, and downregulated the Foxo1-specific E3 ubiquitin ligase Itch. Loss of Roquin enhanced Akt-mTOR signaling and protein synthesis, whereas inhibition of PI3K or mTOR in Roquin-deficient T cells corrected enhanced Tfh and Th17 or reduced iTreg cell differentiation. Thereby, Roquin-mediated control of PI3K-mTOR signaling prevents autoimmunity by restraining activation and differentiation of conventional T cells and specialization of Treg cells.


Assuntos
Colite/imunologia , Fosfatidilinositol 3-Quinases/imunologia , Proteínas Repressoras/imunologia , Serina-Treonina Quinases TOR/imunologia , Ubiquitina-Proteína Ligases/imunologia , Animais , Linfócitos B/imunologia , Linfócitos B/patologia , Diferenciação Celular , Colite/genética , Colite/patologia , Modelos Animais de Doenças , Feminino , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/imunologia , Regulação da Expressão Gênica , Centro Germinativo/imunologia , Centro Germinativo/patologia , Subunidade alfa de Receptor de Interleucina-2/genética , Subunidade alfa de Receptor de Interleucina-2/imunologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/imunologia , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/imunologia , Fosfatidilinositol 3-Quinases/genética , Cultura Primária de Células , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Transdução de Sinais , Baço/imunologia , Baço/patologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Serina-Treonina Quinases TOR/genética , Células Th17/imunologia , Células Th17/patologia , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética
8.
Oncotarget ; 8(22): 35542-35557, 2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28415767

RESUMO

Regulatory T cells (Tregs) are potential immunotherapeutic candidates to induce transplantation tolerance. However, stability of Tregs still remains contentious and may potentially restrict their clinical use. Recent work suggested that epigenetic imprinting of Foxp3 and other Treg-specific signature genes is crucial for stabilization of immunosuppressive properties of Foxp3+ Tregs, and that these events are initiated already during early stages of thymic Treg development. However, the mechanisms governing this process remain largely unknown. Here we demonstrate that thymic antigen-presenting cells (APCs), including thymic dendritic cells (t-DCs) and medullary thymic epithelial cells (mTECs), can induce a more pronounced demethylation of Foxp3 and other Treg-specific epigenetic signature genes in developing Tregs when compared to splenic DCs (sp-DCs). Transcriptomic profiling of APCs revealed differential expression of secreted factors and costimulatory molecules, however neither addition of conditioned media nor interference with costimulatory signals affected Foxp3 induction by thymic APCs in vitro. Importantly, when tested in vivo both mTEC- and t-DC-generated alloantigen-specific Tregs displayed significantly higher efficacy in prolonging skin allograft acceptance when compared to Tregs generated by sp-DCs. Our results draw attention to unique properties of thymic APCs in initiating commitment towards stable and functional Tregs, a finding that could be highly beneficial in clinical immunotherapy.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Epigênese Genética , Impressão Genômica , Isoantígenos/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Biomarcadores , Antígenos CD40/metabolismo , Ligante de CD40/metabolismo , Metilação de DNA , Feminino , Fatores de Transcrição Forkhead/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Transdução de Sinais , Transplante de Pele , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Timócitos/imunologia , Timócitos/metabolismo , Timo/imunologia , Timo/metabolismo
9.
J Immunol ; 197(8): 3406-3414, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27591321

RESUMO

E- and P-selectin ligands (E- and P-ligs) guide effector memory T cells into skin and inflamed regions, mediate the inflammatory recruitment of leukocytes, and contribute to the localization of hematopoietic precursor cells. A better understanding of their molecular regulation is therefore of significant interest with regard to therapeutic approaches targeting these pathways. In this study, we examined the transcriptional regulation of fucosyltransferase 7 (FUT7), an enzyme crucial for generation of the glycosylated E- and P-ligs. We found that high expression of the coding gene fut7 in murine CD4+ T cells correlates with DNA demethylation within a minimal promoter in skin/inflammation-seeking effector memory T cells. Retinoic acid, a known inducer of the gut-homing phenotype, abrogated the activation-induced demethylation of this region, which contains a cAMP responsive element. Methylation of the promoter or mutation of the cAMP responsive element abolished promoter activity and the binding of CREB, confirming the importance of this region and of its demethylation for fut7 transcription in T cells. Furthermore, studies on human CD4+ effector memory T cells confirmed demethylation within FUT7 corresponding to high FUT7 expression. Monocytes showed an even more extensive demethylation of the FUT7 gene whereas hepatocytes, which lack selectin ligand expression, exhibited extensive methylation. In conclusion, we show that DNA demethylation within the fut7 gene controls selectin ligand expression in mice and humans, including the inducible topographic commitment of T cells for skin and inflamed sites.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Metilação de DNA , Fucosiltransferases/metabolismo , Inflamação/metabolismo , Pele/metabolismo , Animais , Células Cultivadas , Metilação de DNA/genética , Fucosiltransferases/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
11.
PLoS One ; 9(2): e88318, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24505473

RESUMO

Regulatory T cells (Tregs) obtain immunosuppressive capacity by the upregulation of forkhead box protein 3 (Foxp3), and persistent expression of this transcription factor is required to maintain their immune regulatory function and ensure immune homeostasis. Stable Foxp3 expression is achieved through epigenetic modification of the Treg-specific demethylated region (TSDR), an evolutionarily conserved non-coding element within the Foxp3 gene locus. Here, we present molecular data suggesting that TSDR enhancer activity is restricted to T cells and cannot be induced in other immune cells such as macrophages or B cells. Since NF-κB signaling has been reported to be instrumental to induce Foxp3 expression during Treg development, we analyzed how NF-κB factors are involved in the molecular regulation of the TSDR. Unexpectedly, we neither observed transcriptional activity of a previously postulated NF-κB binding site within the TSDR nor did the entire TSDR show any transcriptional responsiveness to NF-κB activation at all. Finally, the NF-κB subunit c-Rel revealed to be dispensable for epigenetic imprinting of sustained Foxp3 expression by TSDR demethylation. In conclusion, we show that NF-κB signaling is not substantially involved in TSDR-mediated stabilization of Foxp3 expression in Tregs.


Assuntos
Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , NF-kappa B/metabolismo , Linfócitos T Reguladores/metabolismo , Animais , Linhagem Celular Tumoral , Metilação de DNA , Loci Gênicos , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
12.
Immunity ; 37(6): 998-1008, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23200824

RESUMO

Forkhead box P3 positive (Foxp3(+)) regulatory T (Treg) cells suppress immune responses and regulate peripheral tolerance. Here we show that the atypical inhibitor of NFκB (IκB) IκB(NS) drives Foxp3 expression via association with the promoter and the conserved noncoding sequence 3 (CNS3) of the Foxp3 locus. Consequently, IκB(NS) deficiency leads to a substantial reduction of Foxp3(+) Treg cells in vivo and impaired Foxp3 induction upon transforming growth factor-ß (TGF-ß) treatment in vitro. Moreover, fewer Foxp3(+) Treg cells developed from IκB(NS)-deficient CD25(-)CD4(+) T cells adoptively transferred into immunodeficient recipients. Importantly, IκB(NS) was required for the transition of immature GITR(+)CD25(+)Foxp3(-) thymic Treg cell precursors into Foxp3(+) cells. In contrast to mice lacking c-Rel or Carma1, IκB(NS)-deficient mice do not show reduced Treg precursor cells. Our results demonstrate that IκB(NS) critically regulates Treg cell development in the thymus and during gut inflammation, indicating that strategies targeting IκB(NS) could modulate the Treg cell compartment.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Proteínas I-kappa B/metabolismo , Proteínas/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Transferência Adotiva , Animais , Apoptose , Diferenciação Celular/imunologia , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Proteínas I-kappa B/deficiência , Proteínas I-kappa B/genética , Imunomodulação , Peptídeos e Proteínas de Sinalização Intracelular , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Subunidade p50 de NF-kappa B/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Proto-Oncogênicas c-rel/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Fator de Crescimento Transformador beta/farmacologia
13.
J Exp Med ; 209(10): 1723-42, S1, 2012 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-22966001

RESUMO

Foxp3 activity is essential for the normal function of the immune system. Two types of regulatory T (T reg) cells express Foxp3, thymus-generated natural T reg (nT reg) cells, and peripherally generated adaptive T reg (iT reg) cells. These cell types have complementary functions. Until now, it has not been possible to distinguish iT reg from nT reg cells in vivo based solely on surface markers. We report here that Neuropilin 1 (Nrp1) is expressed at high levels by most nT reg cells; in contrast, mucosa-generated iT reg and other noninflammatory iT reg cells express low levels of Nrp1. We found that Nrp1 expression is under the control of TGF-ß. By tracing nT reg and iT reg cells, we could establish that some tumors have a very large proportion of infiltrating iT reg cells. iT reg cells obtained from highly inflammatory environments, such as the spinal cords of mice with spontaneous autoimmune encephalomyelitis (EAE) and the lungs of mice with chronic asthma, express Nrp1. In the same animals, iT reg cells in secondary lymphoid organs remain Nrp1(low). We also determined that, in spontaneous EAE, iT reg cells help to establish a chronic phase of the disease.


Assuntos
Mucosa/imunologia , Neuropilina-1/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Timo/imunologia , Animais , Linhagem da Célula , Membrana Celular/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/imunologia , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/imunologia , Intestinos/microbiologia , Ativação Linfocitária/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Metagenoma/imunologia , Camundongos , Camundongos Transgênicos , Mucosa/metabolismo , Neuropilina-1/genética , Timo/metabolismo , Fator de Crescimento Transformador beta/farmacologia
14.
Eur J Immunol ; 42(5): 1174-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22539291

RESUMO

Foxp3(+) T regulatory (Treg) cells can be induced to produce interleukin (IL)-17 by in vitro exposure to proinflammatory cytokines, drawing into question their functional stability at sites of inflammation. Unlike their splenic counterparts, Treg cells from the inflamed central nervous system (CNS-Treg cells) during EAE resisted conversion to IL-17 production when exposed to IL-6. We show that the highly activated phenotype of CNS-Treg cells includes elevated expression of the Th1-associated molecules CXCR3 and T-bet, but reduced expression of the IL-6 receptor α chain (CD126) and the signaling chain gp130. We found a lack of IL-6 receptor on all CNS CD4(+) T cells, which was reflected by an absence of both classical and trans-IL-6 signaling in CNS CD4(+) cells, compared with their splenic counterparts. We propose that extinguished responsiveness to IL-6 (via down-regulation of CD126 and gp130) stabilizes the regulatory phenotype of activated Treg cells at sites of autoimmune inflammation.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Fatores de Transcrição Forkhead/imunologia , Interleucina-17/biossíntese , Interleucina-6/imunologia , Receptores de Interleucina-6/imunologia , Linfócitos T Reguladores/imunologia , Animais , Receptor gp130 de Citocina/biossíntese , Receptor gp130 de Citocina/imunologia , Regulação para Baixo , Camundongos , Receptores de Interleucina-6/biossíntese
15.
J Mol Med (Berl) ; 88(10): 1029-40, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20574810

RESUMO

The forkhead-box protein P3 (Foxp3) is a key transcription factor for the development and suppressive activity of regulatory T cells (Tregs), a T cell subset critically involved in the maintenance of self-tolerance and prevention of over-shooting immune responses. However, the transcriptional regulation of Foxp3 expression remains incompletely understood. We have previously shown that epigenetic modifications in the CpG-rich Treg-specific demethylated region (TSDR) in the Foxp3 locus are associated with stable Foxp3 expression. We now demonstrate that the methylation state of the CpG motifs within the TSDR controls its transcriptional activity rather than a Treg-specific transcription factor network. By systematically mutating every CpG motif within the TSDR, we could identify four CpG motifs, which are critically determining the transcriptional activity of the TSDR and which serve as binding sites for essential transcription factors, such as CREB/ATF and NF-κB, which have previously been shown to bind to this element. The transcription factor Ets-1 was here identified as an additional molecular player that specifically binds to the TSDR in a demethylation-dependent manner in vitro. Disruption of the Ets-1 binding sites within the TSDR drastically reduced its transcriptional enhancer activity. In addition, we found Ets-1 bound to the demethylated TSDR in ex vivo isolated Tregs, but not to the methylated TSDR in conventional CD4(+) T cells. We therefore propose that Ets-1 is part of a larger protein complex, which binds to the TSDR only in its demethylated state, thereby restricting stable Foxp3 expression to the Treg lineage.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Proteína Proto-Oncogênica c-ets-1/metabolismo , Linfócitos T Reguladores/metabolismo , Animais , Sequência de Bases , Células Cultivadas , Ilhas de CpG , Elementos Facilitadores Genéticos , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Humanos , Metilação , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Proteína Proto-Oncogênica c-ets-1/genética , Linfócitos T Reguladores/citologia
16.
Cancer Res ; 69(2): 599-608, 2009 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19147574

RESUMO

Regulatory T-cells (Treg) have been the focus of immunologic research due to their role in establishing tolerance for harmless antigens versus allowing immune responses against foes. Increased Treg frequencies measured by mRNA expression or protein synthesis of the Treg marker FOXP3 were found in various cancers, indicating that dysregulation of Treg levels contributes to tumor establishment. Furthermore, they constitute a key target of immunomodulatory therapies in cancer as well as transplantation settings. One core obstacle for understanding the role of Treg, thus far, is the inability of FOXP3 mRNA or protein detection methods to differentiate between Treg and activated T cells. These difficulties are aggravated by the technical demands of sample logistics and processing. Based on Treg-specific DNA demethylation within the FOXP3 locus, we present a novel method for monitoring Treg in human peripheral blood and solid tissues. We found that Treg numbers are significantly increased in the peripheral blood of patients with interleukin 2-treated melanoma and in formalin-fixed tissue from patients with lung and colon carcinomas. Conversely, we show that immunosuppressive therapy including therapeutic antibodies leads to a significant reduction of Treg from the peripheral blood of transplantation patients. In addition, Treg numbers are predictively elevated in the peripheral blood of patients with various solid tumors. Although our data generally correspond to data obtained with gene expression and protein-based methods, the results are less fluctuating and more specific to Treg. The assay presented here measures Treg robustly in blood and solid tissues regardless of conservation levels, promising fast screening of Treg in various clinical settings.


Assuntos
Metilação de DNA , Fatores de Transcrição Forkhead/genética , Neoplasias/imunologia , Linfócitos T Reguladores/imunologia , Adulto , Idoso , Feminino , Fatores de Transcrição Forkhead/biossíntese , Fatores de Transcrição Forkhead/sangue , Humanos , Interleucina-2/uso terapêutico , Masculino , Pessoa de Meia-Idade , Neoplasias/sangue , Neoplasias/tratamento farmacológico , Reação em Cadeia da Polimerase/métodos , Linfócitos T Reguladores/citologia , Imunologia de Transplantes/genética
17.
Eur J Immunol ; 37(9): 2378-89, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17694575

RESUMO

The transcription factor FOXP3 is critical for development and function of regulatory T cells (Treg). Their number and functioning appears to be crucial in the prevention of autoimmunity and allergy, but also to be a negative prognostic marker for various solid tumors. Although expression of the transcription factor FOXP3 currently constitutes the best-known marker for Treg, in humans, transient expression is also observed in activated non-Treg. Extending our recent findings for the murine foxp3 locus, we observed epigenetic modification of several regions in the human FOXP3 locus exclusively occurring in Treg. Importantly, activated conventional CD4(+) T cells and TGF-beta-treated cells displayed no FOXP3 DNA demethylation despite expression of FOXP3, whereas subsets of Treg stable even upon extended in vitro expansion remained demethylated. To investigate whether a whole set of genes might be epigenetically imprinted in the Treg lineage, we conducted a genome-wide differential methylation hybridization analysis. Several genes were found displaying differential methylation between Treg and conventional T cells, but none beside FOXP3 turned out to be entirely specific to Treg when tested on a broad panel of cells and tissues. We conclude that FOXP3 DNA demethylation constitutes the most reliable criterion for natural Treg available at present.


Assuntos
Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Ativação Linfocitária/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proliferação de Células , Células Cultivadas , Metilação de DNA , Feminino , Perfilação da Expressão Gênica , Marcadores Genéticos , Humanos , Imunidade Inata/imunologia , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Masculino , Sensibilidade e Especificidade , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Transativadores/genética , Transativadores/metabolismo , Fator de Crescimento Transformador beta/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA