Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Public Health ; 11: 1268322, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38283289

RESUMO

Non-communicable diseases (NCDs) account for 71% of all annual deaths, totaling 41 million people worldwide. The development and progression of these diseases are highly related to the environment and lifestyle choices, among which physical inactivity and excess malnutrition stand out. Currently, in Chile, there is no evidence at the regional and local level on the impact of physical activity and healthy nutrition plans and interventions on health promotion, prevention, and timely treatment of NCDs. The following protocol delineates the URO/FOCOS (Universidad Regional de O'Higgins/FOrtaleciendo COmunidades Saludables- Regional University of O'Higgins/Strengthening Healthy Communities) study, which will assess pilot community intervention strategies using a participatory action research approach by identifying barriers and facilitators on the practice of physical activity and healthy eating habits. In this project, the community from the O'Higgins region will be involved throughout the entire research process to develop strategies that promote regular physical activity and healthy eating practices. We propose three interrelated strategies: (1) Participatory Action Research, (2) Community interventions for promoting physical activity and healthy nutrition practices, and (3) health education. The URO/FOCOS study offers a unique opportunity in the O'Higgins region to develop participatory strategies and interventions based on the community's needs and motivations with regard to physical activity and healthy eating habits. We believe these strategies will help to improve the community's overall health through effective changes in their decision and preferences toward a more active lifestyle and healthier nutrition practices.


Assuntos
Doenças não Transmissíveis , Humanos , Doenças não Transmissíveis/prevenção & controle , Promoção da Saúde/métodos , Exercício Físico , Educação em Saúde , Estado Nutricional
2.
Int J Obes (Lond) ; 44(2): 500-509, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30705392

RESUMO

BACKGROUND: Obesity is associated with development of insulin resistance in adipose tissue (AT). Human obesity has been associated with increased glycogen deposition in adipocytes. Adipocytes synthesise glycogen prior to the formation of lipids. The present study examined adipose glycogen content in obese Zucker rats and the effect of fasting on glycogen-metabolising enzymes. We hypothesised that obesity imposes a blunted response to fasting through impaired activation of glycogen-metabolizing enzymes, which dampens glycogen mobilization in obese Zucker rats. METHODS: We investigated the effect of 24h fasting on AT glycogen metabolism in 12-week old obese Zucker rats. Epididymal fat pads were collected from rats fed ad-libitum and fasted for 24h. Glycogen content, glycogen synthase and phosphorylase enzyme activity, and PKA activity were analysed as well as total and phosphorylated protein content for glycogen-metabolizing enzymes glycogen synthase and phosphorylase, glucose transporter GLUT4, and cAMP-dependent response element binding protein levels. RESULTS: Twelve-week old obese Zucker rats showed increased AT glycogen content (adipose glycogen content [mean ± SD], lean: 3.95 ± 2.78 to 0.75 + 0.69 µg.mg-1; p < 0.005 fed vs fasted, and obese: 5.23 ± 3.38 to 5.019 ± 1.99 µg.mg-1; p = ns fed and fasted and p < 0.005 lean vs obese), and impaired fasting-induced glycogen mobilization following a 24h fast. These defects were associated with dysfunctional glycogen-metabolizing enzymes, characterized by: (1) blunted phosphorylation-mediated activation and downregulated protein expression of glycogen phosphorylase, and (2) an impaired phosphorylation-mediated inactivation of glycogen synthase. Furthermore, these defects were related to impaired fasting-induced protein kinase A (PKA) activation. CONCLUSION: This study provides evidence of a defective glycogen metabolism in the adipose associated with impaired fasting-induced activation of the upstream kinase protein kinase A, which render a converging point to obesity-related primary alterations in carbohydrate and lipid metabolism in the AT.


Assuntos
Tecido Adiposo/enzimologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Jejum/fisiologia , Glicogênio/metabolismo , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Animais , Glicemia/metabolismo , Feminino , Insulina/metabolismo , Masculino , Ratos , Ratos Zucker
3.
Physiol Rep ; 6(22): e13917, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30488593

RESUMO

Previous studies have demonstrated that exercise increases whole body and skeletal muscle insulin sensitivity that is linked with increased GLUT4 at the plasma membrane following insulin stimulation and associated with muscle glycogen depletion. To assess the potential direct association between muscle glycogen and GLUT4, seven untrained, male subjects exercised for 60 min at ~75% VO2 peak, with muscle samples obtained by percutaneous needle biopsy immediately before and after exercise. Exercise reduced muscle glycogen content by ~43%. An ultracentrifugation protocol resulted in a ~2-3-fold enriched glycogen fraction from muscle samples for analysis. Total GLUT4 content was unaltered by exercise and we were unable to detect any GLUT4 in glycogen fractions, either with or without amylase treatment. In skinned muscle fiber segments, there was very little, if any, GLUT4 detected in wash solutions, except following exposure to 1% Triton X-100. Amylase treatment of single fibers did not increase GLUT4 in the wash solution and there were no differences in GLUT4 content between fibers obtained before or after exercise for any of the wash treatments. Our results indicate no direct association between GLUT4 and glycogen in human skeletal muscle, before or after exercise, and suggest that alterations in GLUT4 translocation associated with exercise-induced muscle glycogen depletion are mediated via other mechanisms.


Assuntos
Exercício Físico , Transportador de Glucose Tipo 4/metabolismo , Glicogênio/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Adulto , Células Cultivadas , Humanos , Masculino , Fibras Musculares Esqueléticas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA