Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Physiol (Oxf) ; 240(6): e14146, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38606882

RESUMO

AIM: The Repressor Element-1 Silencing Transcription Factor (REST) is an epigenetic master regulator playing a crucial role in the nervous system. In early developmental stages, REST downregulation promotes neuronal differentiation and the acquisition of the neuronal phenotype. In addition, postnatal fluctuations in REST expression contribute to shaping neuronal networks and maintaining network homeostasis. Here we investigate the role of the early postnatal deletion of neuronal REST in the assembly and strength of excitatory and inhibitory synaptic connections. METHODS: We investigated excitatory and inhibitory synaptic transmission by patch-clamp recordings in acute neocortical slices in a conditional knockout mouse model (RestGTi) in which Rest was deleted by delivering PHP.eB adeno-associated viruses encoding CRE recombinase under the control of the human synapsin I promoter in the lateral ventricles of P0-P1 pups. RESULTS: We show that, under physiological conditions, Rest deletion increased the intrinsic excitability of principal cortical neurons in the primary visual cortex and the density and strength of excitatory synaptic connections impinging on them, without affecting inhibitory transmission. Conversely, in the presence of a pathological excitation/inhibition imbalance induced by pentylenetetrazol, Rest deletion prevented the increase in synaptic excitation and decreased seizure severity. CONCLUSION: The data indicate that REST exerts distinct effects on the excitability of cortical circuits depending on whether it acts under physiological conditions or in the presence of pathologic network hyperexcitability. In the former case, REST preserves a correct excitatory/inhibitory balance in cortical circuits, while in the latter REST loses its homeostatic activity and may become pro-epileptogenic.


Assuntos
Córtex Cerebral , Homeostase , Proteínas Repressoras , Animais , Camundongos , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiologia , Homeostase/fisiologia , Camundongos Knockout , Rede Nervosa/fisiologia , Rede Nervosa/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Convulsões/genética , Convulsões/metabolismo , Convulsões/fisiopatologia , Transmissão Sináptica/fisiologia
2.
Front Cell Neurosci ; 17: 1267609, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38034589

RESUMO

The repressor element-1 silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) is an epigenetic master regulator that plays a crucial role during nervous system development and maturation. REST function was originally described during development, where it determines neuronal phenotype. However, recent studies showed that REST participates in several processes in the adult brain, including neuronal plasticity and epileptogenesis. In this regard, the relationships between REST and epilepsy are still controversial and need further investigation. As forebrain excitatory neurons are the common final pathway of seizure susceptibility, we investigated the role of REST in epilepsy by inducing REST conditional knockout (REST-cKO) specifically in excitatory neurons of the hippocampus. To target the excitatory neuronal population, we cloned the calcium/calmodulin-dependent protein kinase IIα minimal promoter upstream of Cre recombinase. After assessing the specificity of the promoter's expression, the transgenes were packaged in an engineered adeno-associated virus able to cross the blood-brain and blood-cerebrospinal fluid barriers and delivered in the lateral ventricles of 2-month-old RESTflox/flox mice to characterize, after 1 month, the cognitive phenotype and the seizure propensity. We show that REST-cKO mice display lower levels of anxiety in the light-dark test with respect to control mice but have unaltered motor, social, and cognitive profiles. The evaluation of the susceptibility to epileptic seizures showed that REST-cKO mice are more resistant to pentylenetetrazole-induced kindling but not to seizures induced by a single administration of the convulsant and show higher survival rates. Overall, these data suggest that the absence of REST in forebrain excitatory neurons decreases seizure susceptibility, pointing to a pro-epileptogenic role of the transcriptional repressor under conditions of pathological excitation/inhibition imbalance.

3.
Cell Death Dis ; 12(2): 180, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33589593

RESUMO

Neuroinflammation is associated with synapse dysfunction and cognitive decline in patients and animal models. One candidate for translating the inflammatory stress into structural and functional changes in neural networks is the transcriptional repressor RE1-silencing transcription factor (REST) that regulates the expression of a wide cluster of neuron-specific genes during neurogenesis and in mature neurons. To study the cellular and molecular pathways activated under inflammatory conditions mimicking the experimental autoimmune encephalomyelitis (EAE) environment, we analyzed REST activity in neuroblastoma cells and mouse cortical neurons treated with activated T cell or microglia supernatant and distinct pro-inflammatory cytokines. We found that REST is activated by a variety of neuroinflammatory stimuli in both neuroblastoma cells and primary neurons, indicating that a vast transcriptional change is triggered during neuroinflammation. While a dual activation of REST and its dominant-negative splicing isoform REST4 was observed in N2a neuroblastoma cells, primary neurons responded with a pure full-length REST upregulation in the absence of changes in REST4 expression. In both cases, REST upregulation was associated with activation of Wnt signaling and increased nuclear translocation of ß-catenin, a well-known intracellular transduction pathway in neuroinflammation. Among single cytokines, IL-1ß caused a potent and prompt increase in REST transcription and translation in neurons, which promoted a delayed and strong synaptic downscaling specific for excitatory synapses, with decreased frequency and amplitude of spontaneous synaptic currents, decreased density of excitatory synaptic connections, and decreased frequency of action potential-evoked Ca2+ transients. Most important, the IL-1ß effects on excitatory transmission were strictly REST dependent, as conditional deletion of REST completely occluded the effects of IL-1ß activation on synaptic transmission and network excitability. Our results demonstrate that REST upregulation represents a new pathogenic mechanism for the synaptic dysfunctions observed under neuroinflammatory conditions and identify the REST pathway as therapeutic target for EAE and, potentially, for multiple sclerosis.


Assuntos
Córtex Cerebral/metabolismo , Inflamação/metabolismo , Interleucina-1beta/farmacologia , Proteínas Repressoras/metabolismo , Transmissão Sináptica , Animais , Córtex Cerebral/citologia , Técnicas de Cocultura , Meios de Cultivo Condicionados , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologia , Microglia/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Neurônios/patologia , Proteínas Repressoras/biossíntese , Transmissão Sináptica/efeitos dos fármacos , Linfócitos T/metabolismo , Regulação para Cima
4.
Sci Rep ; 8(1): 8097, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29802307

RESUMO

TAR DNA-binding protein 43 (TDP-43) is a key player in neurodegenerative diseases including frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Accumulation of TDP-43 is associated with neuronal death in the brain. How increased and disease-causing mutant forms of TDP-43 induce cell death remains unclear. Here we addressed the role of TDP-43 during neural development and show that reduced TDP-43 causes defects in neural stem/progenitor cell proliferation but not cell death. However, overexpression of wild type and TDP-43A315T proteins induce p53-dependent apoptosis of neural stem/progenitors and human induced pluripotent cell (iPS)-derived immature cortical neurons. We show that TDP-43 induces expression of the proapoptotic BH3-only genes Bbc3 and Bax, and that p53 inhibition rescues TDP-43 induced cell death of embryonic mouse, and human cortical neurons, including those derived from TDP-43G298S ALS patient iPS cells. Hence, an increase in wild type and mutant TDP-43 induces p53-dependent cell death in neural progenitors developing neurons and this can be rescued. These findings may have important implications for accumulated or mutant TDP-43 induced neurodegenerative diseases.


Assuntos
Apoptose , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Neurais/citologia , Neurônios/citologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Ciclo Celular , Inibidor de Quinase Dependente de Ciclina p21/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Mutação , Neurogênese , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Oncotarget ; 8(11): 17428-17442, 2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28407697

RESUMO

The Hsp90 family of molecular chaperones includes the cytosolic isoforms Hsp90α and Hsp90ß, and the mitochondrial isoform Trap1. Hsp90α/ß support a large number of client proteins in the cytoplasm and the nucleus whereas Trap1 regulates oxidative phosphorylation in mitochondria. Many of the associated proteins and cellular processes are relevant to cancer, and there is ample pharmacological and genetic evidence to support the idea that Hsp90α/ß and Trap1 are required for tumorigenesis. However, a direct and comparative genetic test in a mouse cancer model has not been done. Here we report the effects of deleting the Hsp90α or Trap1 genes in a mouse model of breast cancer. Neither Hsp90α nor Trap1 are absolutely required for mammary tumor initiation, growth and metastasis induced by the polyoma middle T-antigen as oncogene. However, they do modulate growth and lung metastasis in vivo and cell proliferation, migration and invasion of isolated primary carcinoma cells in vitro. Without Hsp90α, tumor burden and metastasis are reduced, correlating with impaired proliferation, migration and invasion of cells in culture. Without Trap1, the appearance of tumors is initially delayed, and isolated cells are affected similarly to those without Hsp90α. Analysis of expression data of human breast cancers supports the conclusion that this is a valid mouse model highlighting the importance of these molecular chaperones.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Animais , Neoplasias da Mama/patologia , Transformação Celular Neoplásica , Citosol/metabolismo , Modelos Animais de Doenças , Feminino , Immunoblotting , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Isoformas de Proteínas
6.
Elife ; 5: e09584, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26745185

RESUMO

The timely transition from neural progenitor to post-mitotic neuron requires down-regulation and loss of the neuronal transcriptional repressor, REST. Here, we have used mice containing a gene trap in the Rest gene, eliminating transcription from all coding exons, to remove REST prematurely from neural progenitors. We find that catastrophic DNA damage occurs during S-phase of the cell cycle, with long-term consequences including abnormal chromosome separation, apoptosis, and smaller brains. Persistent effects are evident by latent appearance of proneural glioblastoma in adult mice deleted additionally for the tumor suppressor p53 protein (p53). A previous line of mice deleted for REST in progenitors by conventional gene targeting does not exhibit these phenotypes, likely due to a remaining C-terminal peptide that still binds chromatin and recruits co-repressors. Our results suggest that REST-mediated chromatin remodeling is required in neural progenitors for proper S-phase dynamics, as part of its well-established role in repressing neuronal genes until terminal differentiation.


Assuntos
Encéfalo/embriologia , Diferenciação Celular , Neurogênese , Neurônios/fisiologia , Proteínas Repressoras/metabolismo , Células-Tronco/fisiologia , Animais , Ciclo Celular , Técnicas de Silenciamento de Genes , Camundongos
7.
Circ Res ; 115(1): 23-31, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24748541

RESUMO

RATIONALE: 22q11 deletion syndrome arises from recombination between low-copy repeats on chromosome 22. Typical deletions result in hemizygosity for TBX1 associated with congenital cardiovascular disease. Deletions distal to the typically deleted region result in a similar cardiac phenotype but lack in extracardiac features of the syndrome, suggesting that a second haploinsufficient gene maps to this interval. OBJECTIVE: The transcription factor HIC2 is lost in most distal deletions, as well as in a minority of typical deletions. We used mouse models to test the hypothesis that HIC2 hemizygosity causes congenital heart disease. METHODS AND RESULTS: We created a genetrap mouse allele of Hic2. The genetrap reporter was expressed in the heart throughout the key stages of cardiac morphogenesis. Homozygosity for the genetrap allele was embryonic lethal before embryonic day E10.5, whereas the heterozygous condition exhibited a partially penetrant late lethality. One third of heterozygous embryos had a cardiac phenotype. MRI demonstrated a ventricular septal defect with over-riding aorta. Conditional targeting indicated a requirement for Hic2 within the Nkx2.5+ and Mesp1+ cardiovascular progenitor lineages. Microarray analysis revealed increased expression of Bmp10. CONCLUSIONS: Our results demonstrate a novel role for Hic2 in cardiac development. Hic2 is the first gene within the distal 22q11 interval to have a demonstrated haploinsufficient cardiac phenotype in mice. Together our data suggest that HIC2 haploinsufficiency likely contributes to the cardiac defects seen in distal 22q11 deletion syndrome.


Assuntos
Síndrome da Deleção 22q11/etiologia , Coração/embriologia , Fatores de Transcrição Kruppel-Like/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Síndrome da Deleção 22q11/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Proteínas Morfogenéticas Ósseas/fisiologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Cardiopatias Congênitas/etiologia , Humanos , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Morfogênese , Mutagênese , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Proteínas com Domínio T/genética , Proteínas com Domínio T/fisiologia , Proteínas Supressoras de Tumor/genética
8.
Genetics ; 195(3): 703-13, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23979585

RESUMO

Targeted mouse mutants are instrumental for the analysis of gene function in health and disease. We recently provided proof-of-principle for the fast-track mutagenesis of the mouse genome, using transcription activator-like effector nucleases (TALENs) in one-cell embryos. Here we report a routine procedure for the efficient production of disease-related knockin and knockout mutants, using improved TALEN mRNAs that include a plasmid-coded poly(A) tail (TALEN-95A), circumventing the problematic in vitro polyadenylation step. To knock out the C9orf72 gene as a model of frontotemporal lobar degeneration, TALEN-95A mutagenesis induced sequence deletions in 41% of pups derived from microinjected embryos. Using TALENs together with mutagenic oligodeoxynucleotides, we introduced amyotrophic lateral sclerosis patient-derived missense mutations in the fused in sarcoma (Fus) gene at a rate of 6.8%. For the simple identification of TALEN-induced mutants and their progeny we validate high-resolution melt analysis (HRMA) of PCR products as a sensitive and universal genotyping tool. Furthermore, HRMA of off-target sites in mutant founder mice revealed no evidence for undesired TALEN-mediated processing of related genomic sequences. The combination of TALEN-95A mRNAs for enhanced mutagenesis and of HRMA for simplified genotyping enables the accelerated, routine production of new mouse models for the study of genetic disease mechanisms.


Assuntos
Engenharia Genética/métodos , Mutagênese , Sequência de Aminoácidos , Esclerose Lateral Amiotrófica/genética , Animais , Sequência de Bases , Desoxirribonucleases/genética , Desoxirribonucleases/metabolismo , Modelos Animais de Doenças , Feminino , Técnicas de Inativação de Genes/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout/genética , Camundongos Mutantes/genética , Camundongos Transgênicos/genética , Dados de Sequência Molecular , Gravidez , RNA Mensageiro/genética , Proteína FUS de Ligação a RNA/genética , Ativação Transcricional
9.
Nat Commun ; 3: 1119, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23047677

RESUMO

Interleukin-17A, the prototypical member of the interleukin-17 cytokine family, coordinates local tissue inflammation by recruiting neutrophils to sites of infection. Dysregulation of interleukin-17 signalling has been linked to the pathogenesis of inflammatory diseases and autoimmunity. The interleukin-17 receptor family members (A-E) have a broad range of functional effects in immune signalling yet no known role has been described for the remaining orphan receptor, interleukin-17 receptor D, in regulating interleukin-17A-induced signalling pathways. Here we demonstrate that interleukin-17 receptor D can differentially regulate the various pathways employed by interleukin-17A. Neutrophil recruitment, in response to in vivo administration of interleukin-17A, is abolished in interleukin-17 receptor D-deficient mice, correlating with reduced interleukin-17A-induced activation of p38 mitogen-activated protein kinase and expression of the neutrophil chemokine MIP-2. In contrast, interleukin-17 receptor D deficiency results in enhanced interleukin-17A-induced activation of nuclear factor-kappa B and interleukin-6 and keratinocyte chemoattractant expression. Interleukin-17 receptor D disrupts the interaction of Act1 and TRAF6 causing differential regulation of nuclear factor-kappa B and p38 mitogen-activated protein kinase signalling pathways.


Assuntos
Interleucina-17/metabolismo , Interleucina-17/farmacologia , Receptores de Interleucina-17/metabolismo , Animais , Linhagem Celular Tumoral , Conexina 43/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Ensaio de Imunoadsorção Enzimática , Células HeLa , Humanos , Interleucina-6/metabolismo , Camundongos , Camundongos Knockout , Infiltração de Neutrófilos/efeitos dos fármacos , Fragmentos de Peptídeos/metabolismo , Receptores de Interleucina-17/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
Cell Metab ; 14(2): 208-18, 2011 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-21803291

RESUMO

Alternative mRNA splicing provides transcript diversity and may contribute to human disease. We demonstrate that expression of several genes regulating RNA processing is decreased in both liver and skeletal muscle of obese humans. We evaluated a representative splicing factor, SFRS10, downregulated in both obese human liver and muscle and in high-fat-fed mice, and determined metabolic impact of reduced expression. SFRS10-specific siRNA induces lipogenesis and lipid accumulation in hepatocytes. Moreover, Sfrs10 heterozygous mice have increased hepatic lipogenic gene expression, VLDL secretion, and plasma triglycerides. We demonstrate that LPIN1, a key regulator of lipid metabolism, is a splicing target of SFRS10; reduced SFRS10 favors the lipogenic ß isoform of LPIN1. Importantly, LPIN1ß-specific siRNA abolished lipogenic effects of decreased SFRS10 expression. Together, our results indicate that reduced expression of SFRS10, as observed in tissues from obese humans, alters LPIN1 splicing, induces lipogenesis, and therefore contributes to metabolic phenotypes associated with obesity.


Assuntos
Lipídeos/biossíntese , Lipogênese/genética , Proteínas do Tecido Nervoso/genética , Obesidade/genética , Fosfatidato Fosfatase/genética , Proteínas de Ligação a RNA/genética , Adulto , Idoso , Animais , Linhagem Celular Tumoral , Feminino , Regulação da Expressão Gênica , Humanos , Lipídeos/sangue , Lipídeos/genética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Obesidade/metabolismo , Splicing de RNA , Proteínas de Ligação a RNA/biossíntese , Fatores de Processamento de Serina-Arginina
11.
Blood ; 118(3): 554-64, 2011 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-21613258

RESUMO

We used a retroviral integration screen to search for novel genes that regulate HSC function. One of the genes that conferred HSC dominance when overexpressed due to an adjacent retroviral insertion was Musashi 2 (Msi2), an RNA-binding protein that can act as a translational inhibitor. A gene-trap mouse model that inactivates the gene shows that Msi2 is more highly expressed in long-term (LT) and short-term (ST) HSCs, as well as in lymphoid myeloid primed progenitors (LMPPs), but much less in intermediate progenitors and mature cells. Mice lacking Msi2 are fully viable for up to a year or more, but exhibit severe defects in primitive precursors, most significantly a reduction in the number of ST-HSCs and LMPPs and a decrease in leukocyte numbers, effects that are exacerbated with age. Cell-cycle and gene-expression analyses suggest that the main hematopoietic defect in Msi2-defective mice is the decreased proliferation capacity of ST-HSCs and LMPPs. In addition, HSCs lacking Msi2 are severely impaired in competitive repopulation experiments, being overgrown by wild-type cells even when mutant cells were provided in excess. Our data indicate that Msi2 maintains the stem cell compartment mainly by regulating the proliferation of primitive progenitors downstream of LT-HSCs.


Assuntos
Células Progenitoras Linfoides/fisiologia , Células Progenitoras Mieloides/fisiologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Animais , Adesão Celular/fisiologia , Divisão Celular/fisiologia , Movimento Celular/fisiologia , Feminino , Testes Genéticos/métodos , Contagem de Leucócitos , Células Progenitoras Linfoides/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Mutagênese Insercional , Células Progenitoras Mieloides/citologia , Neomicina , Inibidores da Síntese de Proteínas , Retroviridae/genética , Baço/patologia , Timo/patologia , beta-Galactosidase/genética
12.
Genome Res ; 20(8): 1154-64, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20548051

RESUMO

Mutational screens are an effective means used in the functional annotation of a genome. We present a method for a mutational screen of the mouse X chromosome using gene trap technologies. This method has the potential to screen all of the genes on the X chromosome without establishing mutant animals, as all gene-trapped embryonic stem (ES) cell lines are hemizygous null for mutations on the X chromosome. Based on this method, embryonic morphological phenotypes and expression patterns for 58 genes were assessed, approximately 10% of all human and mouse syntenic genes on the X chromosome. Of these, 17 are novel embryonic lethal mutations and nine are mutant mouse models of genes associated with genetic disease in humans, including BCOR and PORCN. The rate of lethal mutations is similar to previous mutagenic screens of the autosomes. Interestingly, some genes associated with X-linked mental retardation (XLMR) in humans show lethal phenotypes in mice, suggesting that null mutations cannot be responsible for all cases of XLMR. The entire data set is available via the publicly accessible website (http://xlinkedgenes.ibme.utoronto.ca/).


Assuntos
Análise Mutacional de DNA/métodos , Predisposição Genética para Doença , Testes Genéticos/métodos , Fenótipo , Cromossomo X/genética , Aciltransferases , Animais , Sequência de Bases , Cromossomos Humanos X/genética , Genes Letais , Genes Ligados ao Cromossomo X , Doenças Genéticas Ligadas ao Cromossomo X/genética , Humanos , Proteínas de Membrana/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Camundongos , Anotação de Sequência Molecular , Dados de Sequência Molecular , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética
13.
Genesis ; 47(10): 697-707, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19621438

RESUMO

Periphilin is involved in multiple processes in vivo. To explore its physiological role from an organismic perspective, we generated mice with a gene trap insertion in the periphilin-1 gene. Based on beta-gal reporter activity, a widespread periphilin expression was evident, especially in the developing somites and limbs, the embryonic nervous system, and the adult brain. In accordance with this broad expression, homozygous deficiency of periphilin was lethal in early embryogenesis. Mice with a heterozygous deficiency did not show any abnormalities of brain morphology and function, neither histologically nor regarding the transcriptome. Interestingly, the reduction of the periphilin-1 gene dosage was compensated by an increased expression of the remaining wild-type allele in the brain. These results point to an indispensable function of periphilin during murine development and an important role in the nervous system, reflected by a strong and tightly regulated expression in the murine brain.


Assuntos
Antígenos de Neoplasias/genética , Regulação da Expressão Gênica no Desenvolvimento , Sistema Nervoso/embriologia , Sistema Nervoso/metabolismo , Alelos , Animais , Antígenos de Neoplasias/metabolismo , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Heterozigoto , Camundongos , Camundongos Transgênicos
14.
Biochim Biophys Acta ; 1787(5): 371-6, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19111522

RESUMO

The Tim23 protein is the key component of the mitochondrial import machinery. It locates to the inner mitochondrial membrane and its own import is dependent on the DDP1/TIM13 complex. Mutations in human DDP1 cause the Mohr-Tranebjaerg syndrome (MTS/DFN-1; OMIM #304700), which is one of the two known human diseases of the mitochondrial protein import machinery. We created a Tim23 knockout mouse from a gene trap embryonic stem cell clone. Homozygous Tim23 mice were not viable. Heterozygous F1 mutants showed a 50% reduction of Tim23 protein in Western blot, a neurological phenotype and a markedly reduced life span. Haploinsufficiency of the Tim23 mutation underlines the critical role of the mitochondrial import machinery for maintaining mitochondrial function.


Assuntos
Expectativa de Vida , Proteínas de Membrana/deficiência , Mitocôndrias/genética , Mutação , Animais , Blastocisto/fisiologia , Membro Anterior/fisiologia , Genótipo , Força da Mão , Humanos , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Knockout , Proteínas de Transporte da Membrana Mitocondrial , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/genética , Síndromes Orofaciodigitais/genética , Fenótipo , Transporte Proteico/genética , Teste de Desempenho do Rota-Rod
15.
Am J Pathol ; 173(5): 1455-63, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18818376

RESUMO

Four homologs to the Drosophila homeotic gene spalt (sal) exist in both humans and mice (SALL1 to SALL4/Sall1 to Sall4, respectively). Mutations in both SALL1 and SALL4 result in the autosomal-dominant developmental disorders Townes-Brocks and Okihiro syndrome, respectively. In contrast, no human diseases have been associated with SALL2 to date, and Sall2-deficient mice have shown no apparent abnormal phenotype. We generated mice deficient in Sall2 and, contrary to previous reports, 11% of our Sall2-deficient mice showed background-specific neural tube defects, suggesting that Sall2 has a role in neurogenesis. To investigate whether Sall4 may compensate for the absence of Sall2, we generated compound Sall2 knockout/Sall4 genetrap mutant mice. In these mutants, the incidence of neural tube defects was significantly increased. Furthermore, we found a similar phenotype in compound Sall1/4 mutant mice, and in vitro studies showed that SALL1, SALL2, and SALL4 all co-localized in the nucleus. We therefore suggest a fundamental and redundant function of the Sall proteins in murine neurulation, with the heterozygous loss of a particular SALL protein also possibly compensated in humans during development.


Assuntos
Tubo Neural/embriologia , Tubo Neural/metabolismo , Fatores de Transcrição/metabolismo , Animais , Apoptose , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos/anormalidades , Embrião de Mamíferos/patologia , Regulação da Expressão Gênica no Desenvolvimento , Marcação de Genes , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Mutação/genética , Crista Neural/metabolismo , Crista Neural/patologia , Defeitos do Tubo Neural/metabolismo , Defeitos do Tubo Neural/patologia , Neurulação , Crânio/embriologia , Crânio/metabolismo , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
16.
Cancer Res ; 67(19): 9047-54, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17909008

RESUMO

Histone deacetylases (HDAC) reverse the acetylation of histone and nonhistone proteins and thereby modulate chromatin structure and function of nonhistone proteins. Many tumor cell lines and experimental tumors respond to HDAC inhibition. To assess the role of an individual HDAC isoenzyme in physiology and tumor development, HDAC2-mutant mice were generated from a gene trap embryonic stem cell clone. These mice express a catalytically inactive fusion protein of the NH(2)-terminal part of HDAC2 and beta-galactosidase, which fails to integrate into corepressor complexes with mSin3B. They are the first class 1 HDAC mutant mice that are viable although they are approximately 25% smaller than their littermates. Cell number and thickness of intestinal mucosa are reduced. Mutant embryonic fibroblasts fail to respond to insulin-like growth factor I (IGF) by the IGF-I-induced increase in cell number observed in wild-type cells. These data suggest a novel link between HDACs and IGF-I-dependent responses. Crossing of HDAC2-mutant with tumor-prone APC(min) mice revealed tumor rates that are lower in HDAC2-deficient mice by 10% to 100% depending on segment of the gut and sex of the mice. These mice provide evidence that the key functions of HDAC2, although not essential for survival of the organism, play a rate-limiting role for tumor development in vivo.


Assuntos
Histona Desacetilases/genética , Neoplasias Intestinais/enzimologia , Neoplasias Intestinais/genética , Proteínas Repressoras/genética , Animais , Tamanho Corporal/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/enzimologia , Células-Tronco Embrionárias/fisiologia , Feminino , Genes APC , Histona Desacetilase 2 , Histona Desacetilases/deficiência , Fator de Crescimento Insulin-Like I/farmacologia , Neoplasias Intestinais/patologia , Masculino , Camundongos , Camundongos Mutantes
17.
Nat Med ; 13(3): 324-31, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17322895

RESUMO

In the adult heart, a variety of stresses induce re-expression of a fetal gene program in association with myocyte hypertrophy and heart failure. Here we show that histone deacetylase-2 (Hdac2) regulates expression of many fetal cardiac isoforms. Hdac2 deficiency or chemical histone deacetylase (HDAC) inhibition prevented the re-expression of fetal genes and attenuated cardiac hypertrophy in hearts exposed to hypertrophic stimuli. Resistance to hypertrophy was associated with increased expression of the gene encoding inositol polyphosphate-5-phosphatase f (Inpp5f) resulting in constitutive activation of glycogen synthase kinase 3beta (Gsk3beta) via inactivation of thymoma viral proto-oncogene (Akt) and 3-phosphoinositide-dependent protein kinase-1 (Pdk1). In contrast, Hdac2 transgenic mice had augmented hypertrophy associated with inactivated Gsk3beta. Chemical inhibition of activated Gsk3beta allowed Hdac2-deficient adults to become sensitive to hypertrophic stimulation. These results suggest that Hdac2 is an important molecular target of HDAC inhibitors in the heart and that Hdac2 and Gsk3beta are components of a regulatory pathway providing an attractive therapeutic target for the treatment of cardiac hypertrophy and heart failure.


Assuntos
Cardiomegalia/enzimologia , Quinase 3 da Glicogênio Sintase/metabolismo , Histona Desacetilases/fisiologia , Proteínas Repressoras/fisiologia , Animais , Cardiomegalia/embriologia , Cardiomegalia/genética , Ativação Enzimática/fisiologia , Feto , Glicogênio Sintase Quinase 3 beta , Histona Desacetilase 2 , Histona Desacetilases/biossíntese , Histona Desacetilases/deficiência , Histona Desacetilases/genética , Isoenzimas/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Dados de Sequência Molecular , Proteínas Repressoras/biossíntese , Proteínas Repressoras/genética , Transdução de Sinais/fisiologia
18.
Mol Cell Biol ; 26(24): 9291-301, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17000755

RESUMO

Nucleostemin (NS) is a putative GTPase expressed preferentially in the nucleoli of neuronal and embryonic stem cells and several cancer cell lines. Transfection and knockdown studies indicated that NS controls the proliferation of these cells by interacting with the p53 tumor suppressor protein and regulating its activity. To assess the physiological role of NS in vivo, we generated a mutant mouse line with a specific gene trap event that inactivates the NS allele. The corresponding NS(-/-) embryos died around embryonic day 4. Analyses of NS mutant blastocysts indicated that NS is not required to maintain pluripotency, nucleolar integrity, or survival of the embryonic stem cells. However, the homozygous mutant blastocysts failed to enter S phase even in the absence of functional p53. Haploid insufficiency of NS in mouse embryonic fibroblasts leads to decreased cell proliferation. NS also functions in early amphibian development to control cell proliferation of neural progenitor cells. Our results show that NS has a unique ability, derived from an ancestral function, to control the proliferation rate of stem/progenitor cells in vivo independently of p53.


Assuntos
Proteínas de Transporte/fisiologia , Proliferação de Células , Sequência Conservada , Células-Tronco Embrionárias/fisiologia , Evolução Molecular , Proteínas Nucleares/fisiologia , Proteínas de Xenopus/fisiologia , Animais , Proteínas de Transporte/genética , Células Cultivadas , Implantação do Embrião/genética , Feminino , Proteínas de Ligação ao GTP , Genes Letais/fisiologia , Camundongos , Neurônios/citologia , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Proteínas de Ligação a RNA , Xenopus laevis/embriologia
19.
Mol Cell Biol ; 26(23): 8976-83, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17000766

RESUMO

The functions of molecular chaperones have been extensively investigated biochemically in vitro and genetically in bacteria and yeast. We have embarked on a functional genomic analysis of the Hsp90 chaperone machine in the mouse by disrupting the p23 gene using a gene trap approach. p23 is an Hsp90 cochaperone that is thought to stabilize Hsp90-substrate complexes and, independently, to act as the cytosolic prostaglandin E2 synthase. Gene deletions in budding and fission yeasts and knock-down experiments with the worm have not revealed any clear in vivo requirements for p23. We find that p23 is not essential for overall prenatal development and morphogenesis of the mouse, which parallels the observation that it is dispensable for proliferation in yeast. In contrast, p23 is absolutely necessary for perinatal survival. Apart from an incompletely formed skin barrier, the lungs of p23 null embryos display underdeveloped airspaces and substantially reduced expression of surfactant genes. Correlating with the known function of glucocorticoids in promoting lung maturation and the role of p23 in the assembly of a hormone-responsive glucocorticoid receptor-Hsp90 complex, p23 null fibroblast cells have a defective glucocorticoid response. Thus, p23 contributes a nonredundant, temporally restricted, and tissue-specific function during mouse development.


Assuntos
Animais Recém-Nascidos , Proteínas de Choque Térmico HSP90/fisiologia , Chaperonas Moleculares/fisiologia , Fosfoproteínas/fisiologia , Animais , Linhagem Celular Transformada , Transformação Celular Viral , Fibroblastos/metabolismo , Deleção de Genes , Proteínas de Choque Térmico HSP90/metabolismo , Oxirredutases Intramoleculares , Pulmão/embriologia , Pulmão/ultraestrutura , Camundongos , Camundongos Knockout , Camundongos Mutantes , Chaperonas Moleculares/genética , Mutagênese Insercional , Fosfoproteínas/genética , Prostaglandina-E Sintases , Receptores de Glucocorticoides/análise , Pele/embriologia , Pele/ultraestrutura
20.
Genesis ; 42(2): 91-103, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15887267

RESUMO

We have generated a mouse line with a mutant allele of the mouse Bruce/Birc6 gene induced by gene trap mutagenesis. Based on its structural features, Bruce is a member of the family of apoptosis inhibitor proteins (IAPs). This mutation leads to a truncated transcript and protein and results in a complete loss of the wildtype Bruce protein. Bruce mutant mice die from a progressive loss of their placental spongiotrophoblast layer between day 11.5 and 14.5 of embryonic development. The cause of the Bruce homozygous mutant phenotype is a lack of proliferation of spongiotrophoblast cells in the developing placenta. In contrast to in vitro data, which indicate a function for Bruce in apoptosis inhibition, the in vivo results presented here suggest instead a role for Bruce in cell division.


Assuntos
Desenvolvimento Embrionário , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiologia , Trofoblastos/citologia , Animais , Apoptose , Sequência de Bases , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Letais , Genótipo , Hibridização In Situ , Proteínas Inibidoras de Apoptose , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Mutagênese , Fenótipo , RNA/metabolismo , Células-Tronco/citologia , beta-Galactosidase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA