Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ther Nucleic Acids ; 35(2): 102211, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38831899

RESUMO

Mucopolysaccharidosis type IVA (MPS IVA) is caused by a deficiency of the galactosamine (N-acetyl)-6-sulfatase (GALNS) enzyme responsible for the degradation of specific glycosaminoglycans (GAGs). The progressive accumulation of GAGs leads to various skeletal abnormalities (short stature, hypoplasia, tracheal obstruction) and several symptoms in other organs. To date, no treatment is effective for patients with bone abnormalities. To improve bone pathology, we propose a novel combination treatment with the adeno-associated virus (AAV) vectors expressing GALNS enzyme and a natriuretic peptide C (CNP; NPPC gene) as a growth-promoting agent for MPS IVA. In this study, an MPS IVA mouse model was treated with an AAV vector expressing GALNS combined with another AAV vector expressing NPPC gene, followed for 12 weeks. After the combination therapy, bone growth in mice was induced with increased enzyme activity in tissues (bone, liver, heart, lung) and plasma. Moreover, there were significant changes in bone morphology in CNP-treated mice with increased CNP activity in plasma. Delivering combinations of CNP and GALNS gene therapies enhanced bone growth in MPS IVA mice more than in GALNS gene therapy alone. Enzyme expression therapy alone fails to reach the bone growth region; our results indicate that combining it with CNP offers a potential alternative.

2.
Mol Ther Methods Clin Dev ; 31: 101153, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38107675

RESUMO

Mucopolysaccharidosis (MPS) IVA is a lysosomal storage disorder caused by mutations in the GALNS gene that leads to the lysosomal accumulation of keratan sulfate (KS) and chondroitin 6-sulfate, causing skeletal dysplasia and cardiopulmonary complications. Current enzyme replacement therapy does not impact the bone manifestation of the disease, supporting that new therapeutic alternatives are required. We previously demonstrated the suitability of the CRISPR-nCas9 system to rescue the phenotype of human MPS IVA fibroblasts using iron oxide nanoparticles (IONPs) as non-viral vectors. Here, we have extended this strategy to an MPS IVA mouse model by inserting the human GALNS cDNA into the ROSA26 locus. The results showed increased GALNS activity, mono-KS reduction, partial recovery of the bone pathology, and non-IONPs-related toxicity or antibody-mediated immune response activation. This study provides, for the first time, in vivo evidence of the potential of a CRISPR-nCas9-based gene therapy strategy for treating MPS IVA using non-viral vectors as carriers.

3.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36293546

RESUMO

Adeno-associated virus (AAV) vector-based therapies can effectively correct some disease pathology in murine models with mucopolysaccharidoses. However, immunogenicity can limit therapeutic effect as immune responses target capsid proteins, transduced cells, and gene therapy products, ultimately resulting in loss of enzyme activity. Inherent differences in male versus female immune response can significantly impact AAV gene transfer. We aim to investigate sex differences in the immune response to AAV gene therapies in mice with mucopolysaccharidosis IVA (MPS IVA). MPS IVA mice, treated with different AAV vectors expressing human N-acetylgalactosamine 6-sulfate sulfatase (GALNS), demonstrated a more robust antibody response in female mice resulting in subsequent decreased GALNS enzyme activity and less therapeutic efficacy in tissue pathology relative to male mice. Under thyroxine-binding globulin promoter, neutralizing antibody titers in female mice were approximately 4.6-fold higher than in male mice, with GALNS enzyme activity levels approximately 6.8-fold lower. Overall, male mice treated with AAV-based gene therapy showed pathological improvement in the femur and tibial growth plates, ligaments, and articular cartilage as determined by contrasting differences in pathology scores compared to females. Cardiac histology revealed a failure to normalize vacuolation in females, in contrast, to complete correction in male mice. These findings promote the need for further determination of sex-based differences in response to AAV-mediated gene therapy related to developing treatments for MPS IVA.


Assuntos
Condroitina Sulfatases , Mucopolissacaridoses , Mucopolissacaridose IV , Humanos , Feminino , Camundongos , Masculino , Animais , Globulina de Ligação a Tiroxina/genética , Globulina de Ligação a Tiroxina/metabolismo , Modelos Animais de Doenças , Caracteres Sexuais , Proteínas do Capsídeo/genética , Terapia Genética , Anticorpos Neutralizantes/uso terapêutico , Expressão Gênica , Condroitina Sulfatases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA