Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 95(33): 12427-12434, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37560995

RESUMO

Reactive sulfur species (RSS) are emerging as a potential key gasotransmitter in diverse physiological processes linking two signaling molecules H2S and SO2. However, the exact roles of H2S and SO2 remain unclear. A major hurdle is the shortage of accurate and robust approaches for sensing of H2S and SO2 in biological systems. Herein, we report a reaction-mediated dual-recognition strategy-based nanosensor, silver nanoparticles (AgNPs)-loaded MIL-101 (Fe) (ALM) hybrids, for the simultaneous detection of H2S and SO2 in a living cell. Upon exposure to H2S, AgNPs can be oxidized to form Ag2S, causing a decrease of surface enhanced Raman spectroscopy (SERS) signals of p,p'-dimercaptoazobenzene. Moreover, SO2 reacts with the amino moiety of MIL-101 to form charge-transfer complexes, resulting in an increment of fluorescent (FL) intensity. The ALM with dual-modal signals can simultaneously analyze H2S and SO2 at a concentration as low as 2.8 × 10-6 and 0.003 µM, respectively. Most importantly, the ALM sensing platform enables targeting mitochondria and detection multiple RSS simultaneously in living cells under external stimulation, as well as displays indiscernible crosstalk between SERS and FL signals, which is very beneficial for the comprehension of physiological issues related with RSS.


Assuntos
Espaço Intracelular , Espaço Intracelular/química , Enxofre/química , Humanos , Linhagem Celular Tumoral , Prata/química , Nanopartículas Metálicas , Dióxido de Enxofre/química
2.
Foods ; 12(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36981058

RESUMO

Pesticide residues in aquatic products are of great concern due to the risk of environmental transmission and their extensive use in aquaculture. In our work, a quick screening approach was developed for the qualitative and semi-quantitative screening of 87 pesticide residues in aquatic products. The sample preparation was investigated, including extract solvent, extract methods, buffer salts, lipid removal, cleanup materials and filter membranes for aquatic products. Samples were extracted using a modified QuEChERS procedure, and two clean-up procedures were developed for UHPLC-Q/Orbitrap MS analysis based on the fat content of the aquatic products. The screening detection limits for all studied pesticides were distributed between 1 and 500 µg/kg in the three representative matrices. Seventy-one pesticides could be analyzed with a screening limit between 1 and 25 µg/kg in grass carp and crayfish, sixty-one pesticides could be screened for limits between 1 and 50 µg/kg in crab. The accuracy results showed that recoveries ranged from 50 to 120% for 60, 56 and 52 pesticides at medium-level for grass carp, crayfish and crab, respectively. At high spiking levels, 74, 65 and 59 pesticides were recovered within the range of 50-120% for the three matrices, respectively. The relative standard deviations of most compounds in different matrices were less than 20%. With this method, the local farmed aquatic products were tested for pesticide residues. In these samples, ethoxyquinoline, prometryn and phoxim were frequently detected. The majority of these confirmed compounds did not exceed 2.00 µg/kg. A grass carp with trichlorfon at 4.87 µg/kg and two carps with ethoxyquinoline at 200 µg/kg were detected, indicating the potential dietary risk.

3.
Anal Chem ; 95(6): 3507-3515, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36724388

RESUMO

ATP and reactive oxygen species (ROS) are considered significant indicators of cell apoptosis. However, visualizing the interplay between apoptosis-related ATP and ROS is challenging. Herein, we developed a metal-organic framework (MOF)-based nanoprobe for an apoptosis assay using duplex imaging of cellular ATP and ROS. The nanoprobe was fabricated through controlled encapsulation of gold nanorods with a thin zirconium-based MOF layer, followed by modification of the ROS-responsive molecules 2-mercaptohydroquinone and 6-carboxyfluorescein-labeled ATP aptamer. The nanoprobe enables ATP and ROS visualization via fluorescence and surface-enhanced Raman spectroscopy, respectively, avoiding the mutual interference that often occurs in single-mode methods. Moreover, the dual-modal assay effectively showed dynamic imaging of ATP and ROS in cancer cells treated with various drugs, revealing their apoptosis-related pathways and interactions that differ from those under normal conditions. This study provides a method for studying the relationship between energy metabolism and redox homeostasis in cell apoptosis processes.


Assuntos
Apoptose , Ouro , Espécies Reativas de Oxigênio/metabolismo , Ouro/química , Trifosfato de Adenosina
4.
ACS Nano ; 16(4): 6605-6614, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35420023

RESUMO

1,4-Benzenedithiol (BDT)-bridged core-satellite assemblies, as surface-enhanced Raman spectroscopy (SERS) mechanical probes, can be employed for real-time monitoring of the dynamics of endocytic forces and the accompanying trajectory of nanoparticles during the endocytosis process. These mechanical probes exhibit good responses in terms of SERS intensity ratios while undergoing mechanical pressure. Force tracing and the accompanying trajectory of nanoparticles are resolved accurately to render the endocytosis process in live cells. Density functional theory simulation results further proved the sensing scheme due to the electrons transforming between BDT and gold nanoparticles. Furthermore, this SERS mechanical probe is a valid method to visualize endocytic forces at multiple locations and establish a direct criterion to discriminate between cancer cells and normal cells.


Assuntos
Nanopartículas Metálicas , Análise Espectral Raman , Análise Espectral Raman/métodos , Ouro/química , Nanopartículas Metálicas/química
5.
Int J Anal Chem ; 2021: 9980212, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34046066

RESUMO

The intensive aquaculture strategy and recirculating aquaculture system often lead to the production of off-flavor compounds such as 2-methyl-isoborneol (2-MIB) and Geosmin (GSM). The regular purge and trap extraction followed by analysis with gas chromatography-mass spectrometry (GC-MS) usually involve a complicated assembly of facilities, more working space, long sample preparation time, and headspace solid-phase microextraction (SPME). In this work, a method with easier sample preparation, fewer and simplified facilities, and without SPME on GC-MS analysis is developed for the determination of 2-MIB and GSM in fish samples. Unlike previous methods, solvent extract from samples, QuEChERS-based cleanup, and solid-phase extraction for concentration are applied. The LOD (S/N > 3) and LOQ (S/N > 10) of this method were validated at 0.6 µg/kg and 1.0 µg/kg for both 2-MIB and GSM, which are under the sensory limit (1 µg/kg). Application of this method for incurred fish samples demonstrated acceptable analytical performance. This method is suitable for large-scale determination of 2-MIB and GSM in fish samples, owing to the use of simple facility and easy-to-operate procedure, rapid sample preparation, and shorter time for GC-MS analysis without SPME.

6.
Food Chem ; 338: 127787, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32827901

RESUMO

A rapid colorimetric method using cysteine-modified silver nanoparticles (Cys-AgNPs) is applied for the detection of 3-monochloropropane-1,2-diol (3-MCPD). Indeed, in the presence of 3-MCPD, the color of Cys-AgNPs solution changes from yellow to pink within five minutes at 100 °C and pH 9.3. This change is mainly attributed to the ability of amino group of cysteine to react with 3-MCPD to form N-(2,3-dihydroxypropyl)-amino acid grafted on AgNPs (3-MCPD-Cys-AgNPs) in alkaline medium. This color change makes 3-MCPD to be clearly detectable by unassisted visual means even at 0.1 µg⋅mL-1. Besides, using UV-Vis spectroscopic technique, a linear range from 0.1 µg⋅mL-1 to 1.25 µg⋅mL-1 for 3-MCPD detection is obtained, with a calculated detection limit of 0.084 µg⋅mL-1. These results suggest that this sensing technique is sensitive to 3-MCPD and may have a substantial application in the rapid detection of food contaminants particularly, where quality and safety of food products are paramount concern.


Assuntos
Cisteína/química , Análise de Alimentos/métodos , Nanopartículas Metálicas/química , Prata/química , alfa-Cloridrina/análise , Colorimetria , Contaminação de Alimentos/análise , Fatores de Tempo , alfa-Cloridrina/isolamento & purificação
7.
Mikrochim Acta ; 187(8): 435, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647994

RESUMO

Lysosomes with a single-layered membrane structure are mainly involved in the scavenging of foreign substances and play an important role in maintaining normal physiological functions of living cells. In this work, near-neutrally charged fluorescent carbon dots (CDs) were prepared with lipophilicity through a facile one-pot hydrothermal carbonization of chloranil and triethylenetetramine at 160 °C for 3 h. The as-obtained CDs are proved to have good photostability, low cost, and excellent biocompatibility. Importantly, the as-prepared CDs with high quantum yield of 30.8% show excitation-dependent emission with great stability, and thus, they can be well used for the long-term target imaging of lysosomes in living cells without further modification. Meanwhile, the CDs can quickly enter into the lysosomes within 30 min, and the green fluorescence (FL) of CDs reaches the plateau when incubated for 60 min. By comparing the fluorescent intensity, the information about distribution and amount of lysosomes in different cells can be obtained. The proposed CD-based strategy demonstrates great promise for label-free target imaging of lysosomes in living cells. Graphical abstract The near-neutral carbon dots (CDs) with lipophilicity are used as label-free fluorescent nanoprobes for the long-term imaging of lysosomes in living cells.


Assuntos
Corantes Fluorescentes/química , Lisossomos/metabolismo , Pontos Quânticos/química , Animais , Carbono/química , Carbono/toxicidade , Linhagem Celular Tumoral , Cloro/química , Cloro/toxicidade , Corantes Fluorescentes/toxicidade , Humanos , Camundongos , Microscopia Confocal , Microscopia de Fluorescência , Nitrogênio/química , Nitrogênio/toxicidade , Pontos Quânticos/toxicidade , Células RAW 264.7
8.
Anal Chim Acta ; 1099: 119-125, 2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-31986268

RESUMO

γ-Glutamyl transpeptidase (GGT) has attracted considerable attention for its regulatory effect on glutathione metabolism in living organisms; further, its close relationship with physiological dysfunctions such as hepatitis and liver cancers has enhanced its applicability. Therefore, the accurate detection of GGT levels is particularly important for the early diagnosis of diseases. Thus, we herein report the development of a surface-enhanced Raman spectroscopic (SERS) probe, namely bis-s,s'-((s)-4,4'-thiolphenylamide-Glu) (b-(s)-TPA-Glu), that comprises of a γ-glutamyl moiety for detection of the GGT activity. In this system, detection was achieved by observing differences in the SERS spectral profiles of the b-(s)-TPA-Glu probe and its corresponding hydrolysis product that resulted from the catalytic action of GGT. This SERS probe system exhibited a high selectivity toward GGT due to a combination of its specific catalytic action and the distinctive spectroscopic fingerprint of the SERS technique. The developed SERS approach was also found to be approximately linear in the range of 0.2-200 U/L, and a limit of detection of 0.09 U/L was determined. Furthermore, the proposed SERS method was suitable for detection of the GGT activity of clinical serum samples and also for evaluation of the inhibitors of GGT. Consequently, this approach is considered to be a promising diagnostic and drug screening tool for GGT-associated diseases.


Assuntos
Sondas Moleculares/química , gama-Glutamiltransferase/sangue , Amidas/química , Ácido Glutâmico/química , Humanos , Estrutura Molecular , Nanopartículas/química , Prata/química , Análise Espectral Raman , Compostos de Sulfidrila/química , Propriedades de Superfície , gama-Glutamiltransferase/metabolismo
9.
Chem Cent J ; 11(1): 58, 2017 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-29086848

RESUMO

In these recent years, magnetite (Fe3O4) has witnessed a growing interest in the scientific community as a potential material in various fields of application namely in catalysis, biosensing, hyperthermia treatments, magnetic resonance imaging (MRI) contrast agents and drug delivery. Their unique properties such as metal-insulator phase transitions, superconductivity, low Curie temperature, and magnetoresistance make magnetite special and need further investigation. On the other hand, nanoparticles especially gold nanoparticles (Au NPs) exhibit striking features that are not observed in the bulk counterparts. For instance, the mentioned ferromagnetism in Au NPs coated with protective agents such as dodecane thiol, in addition to their aptitude to be used in near-infrared (NIR) light sensitivity and their high adsorptive ability in tumor cell, make them useful in nanomedicine application. Besides, silver nanoparticles (Ag NPs) are known as an antimicrobial agent. Put together, the [Formula: see text] nanocomposites with tunable size can therefore display important demanding properties for diverse applications. In this review, we try to examine the new trend of magnetite-based nanomaterial synthesis and their application in catalysis and nanomedicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA