Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35163282

RESUMO

The relevance of vasopressin (AVP) of magnocellular origin to the regulation of the endocrine stress axis and related behaviour is still under discussion. We aimed to obtain deeper insight into this process. To rescue magnocellular AVP synthesis, a vasopressin-containing adeno-associated virus vector (AVP-AAV) was injected into the supraoptic nucleus (SON) of AVP-deficient Brattleboro rats (di/di). We compared +/+, di/di, and AVP-AAV treated di/di male rats. The AVP-AAV treatment rescued the AVP synthesis in the SON both morphologically and functionally. It also rescued the peak of adrenocorticotropin release triggered by immune and metabolic challenges without affecting corticosterone levels. The elevated corticotropin-releasing hormone receptor 1 mRNA levels in the anterior pituitary of di/di-rats were diminished by the AVP-AAV-treatment. The altered c-Fos synthesis in di/di-rats in response to a metabolic stressor was normalised by AVP-AAV in both the SON and medial amygdala (MeA), but not in the central and basolateral amygdala or lateral hypothalamus. In vitro electrophysiological recordings showed an AVP-induced inhibition of MeA neurons that was prevented by picrotoxin administration, supporting the possible regulatory role of AVP originating in the SON. A memory deficit in the novel object recognition test seen in di/di animals remained unaffected by AVP-AAV treatment. Interestingly, although di/di rats show intact social investigation and aggression, the SON AVP-AAV treatment resulted in an alteration of these social behaviours. AVP released from the magnocellular SON neurons may stimulate adrenocorticotropin secretion in response to defined stressors and might participate in the fine-tuning of social behaviour with a possible contribution from the MeA.


Assuntos
Hormônio Adrenocorticotrópico/metabolismo , Núcleo Supraóptico/metabolismo , Vasopressinas/metabolismo , Hormônio Adrenocorticotrópico/genética , Animais , Núcleo Basal de Meynert/metabolismo , Encéfalo/metabolismo , Corticosterona/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Masculino , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Brattleboro , Comportamento Social , Vasopressinas/fisiologia
2.
Stress ; 19(4): 349-61, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27187740

RESUMO

Vasopressin, a nonapeptide, signaling both as hormone in the blood and neuromodulator/neurotransmitter in the brain is considered to be causally involved in the pathological changes underlying anxiety and depression. In the present review we summarize experimental data obtained with Brattleboro rats as a model of congenital vasopressin-deficiency to test the hypothesis that central vasopressin signaling contributes to anxiety- and depression-like behavior. Male, female and lactating rats were studied. We focused on the paraventricular nucleus of the hypothalamus (PVN) and the septum, two brain areas in which vasopressin is proposed to control the endocrine and behavioral stress response, respectively. The presented data support the hypothesis that the behavioral changes seen in these rats are brought about by an altered vasopressin signaling at the brain level. Whereas vasopressin synthesized and released within the hypothalamus is primarily involved in endocrine regulation, vasopressin signaling in other brain areas may contribute to anxiety- and depression-like behavioral parameters. Further studies in this context might focus particularly on the interplay between extra-hypothalamic brain areas such as the septum and the medial amygdala.


Assuntos
Comportamento Animal/fisiologia , Estresse Psicológico/metabolismo , Vasopressinas/metabolismo , Animais , Ansiedade/metabolismo , Encéfalo/metabolismo , Depressão/metabolismo , Feminino , Lactação , Masculino , Núcleo Hipotalâmico Paraventricular/metabolismo , Ratos , Ratos Brattleboro
3.
Physiol Behav ; 158: 100-11, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26939727

RESUMO

Vasopressin can contribute to the development of stress-related psychiatric disorders, anxiety and depression. Although these disturbances are more common in females, most of the preclinical studies have been done in males. We compared female vasopressin-deficient and +/+ Brattleboro rats. To test anxiety we used open-field, elevated plus maze (EPM), marble burying, novelty-induced hypophagia, and social avoidance tests. Object and social recognition were used to assess short term memory. To test depression-like behavior consumption of sweet solutions (sucrose and saccharin) and forced swim test (FST) were studied. The stress-hormone levels were followed by radioimmunoassay and underlying brain areas were studied by c-Fos immunohistochemistry. In the EPM the vasopressin-deficient females showed more entries towards the open arms and less stretch attend posture, drank more sweet fluids and struggled more (in FST) than the +/+ rats. The EPM-induced stress-hormone elevations were smaller in vasopressin-deficient females without basal as well as open-field and FST-induced genotype-differences. On most studied brain areas the resting c-Fos levels were higher in vasopressin-deficient rats, but the FST-induced elevations were smaller than in the +/+ ones. Similarly to males, female vasopressin-deficient animals presented diminished depression- and partly anxiety-like behavior with significant contribution of stress-hormones. In contrast to males, vasopressin deficiency in females had no effect on object and social memory, and stressor-induced c-Fos elevations were diminished only in females. Thus, vasopressin has similar effect on anxiety- and depression-like behavior in males and females, while only in females behavioral alterations are associated with reduced neuronal reactivity in several brain areas.


Assuntos
Ansiedade/genética , Encéfalo/patologia , Depressão/genética , Estresse Psicológico/genética , Estresse Psicológico/patologia , Vasopressinas/deficiência , Hormônio Adrenocorticotrópico/sangue , Animais , Ansiedade/patologia , Condicionamento Operante/fisiologia , Modelos Animais de Doenças , Feminino , Preferências Alimentares/fisiologia , Preferências Alimentares/psicologia , Locomoção/genética , Aprendizagem em Labirinto/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Brattleboro , Ratos Transgênicos , Reconhecimento Psicológico/fisiologia , Comportamento Social , Natação/psicologia , Vasopressinas/genética
4.
Psychoneuroendocrinology ; 51: 11-23, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25278460

RESUMO

Beside its hormonal function in salt and water homeostasis, vasopressin released into distinct brain areas plays a crucial role in stress-related behavior resulting in the enhancement of an anxious/depressive-like state. We aimed to investigate whether correction of the peripheral symptoms of congenital absence of AVP also corrects the behavioral alterations in AVP-deficient Brattleboro rats. Wild type (WT) and vasopressin-deficient (KO) male Brattleboro rats were tested. Half of the KO animals were treated by desmopressin (V2-receptor agonist) via osmotic minipump (subcutaneous) to eliminate the peripheral symptoms of vasopressin-deficiency. Anxiety was studied by elevated plus maze (EPM), defensive withdrawal (DW) and marble burying (MB) tests, while depressive-like changes were monitored in forced swimming (FS) and anhedonia by sucrose preference test. Cell activity was examined in septum and amygdala by c-Fos immunohistochemistry after 10 min FS. KO rats spent more time in the open arm of the EPM, spent less time at the periphery of DW and showed less burying behavior in MB suggesting a reduced anxiety state. KO animals showed less floating behavior during FS revealing a less depressive phenotype. Desmopressin treatment compensated the peripheral effects of vasopressin-deficiency without a significant influence on the behavior. The FS-induced c-Fos immunoreactivity in the medial amygdala was different in WT and KO rats, with almost identical levels in KO and desmopressin treated animals. There were no differences in central and basolateral amygdala as well as in lateral septum. Our data confirmed the role of vasopressin in the development of affective disorders through central mechanisms. The involvement of the medial amygdala in the behavioral alterations of vasopressin deficient animals deserves further attention.


Assuntos
Tonsila do Cerebelo/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Receptores de Vasopressinas/metabolismo , Septo Pelúcido/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Animais , Ansiedade/metabolismo , Desamino Arginina Vasopressina/farmacologia , Depressão/metabolismo , Masculino , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Brattleboro , Septo Pelúcido/metabolismo , Transdução de Sinais/fisiologia , Natação
5.
J Endocrinol ; 219(2): 89-100, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23943883

RESUMO

Adaptation to stress is a basic phenomenon in mammalian life that is mandatorily associated with the activity of the hypothalamic-pituitary-adrenal (HPA) axis. An increased resting activity of the HPA axis can be measured during pregnancy and lactation, suggesting that these reproductive states lead to chronic load in females. In this study, we examined the consequences of the congenital lack of vasopressin on the activity of the HPA axis during lactation using vasopressin-deficient Brattleboro rats. Virgin and lactating, homozygous vasopressin-deficient rats were compared with control, heterozygous rats. In control dams compared with virgins, physiological changes similar to those observed in a chronic stress state (thymus involution, adrenal gland hyperplasia, elevation of proopiomelanocortin mRNA levels in the adenohypophysis, and resting plasma corticosterone levels) were observed. In vasopressin-deficient dams, adrenal gland hyperplasia and resting corticosterone level elevations were not observed. Corticotropin-releasing hormone (Crh) mRNA levels in the hypothalamic paraventricular nucleus were elevated in only the control dams, while oxytocin (OT) mRNA levels were higher in vasopressin-deficient virgins and lactation induced a further increase in both the genotypes. Suckling-induced ACTH and corticosterone level elevations were blunted in vasopressin-deficient dams. Anaphylactoid reaction (i.v. egg white) and insulin-induced hypoglycemia stimulated the HPA axis, which were blunted in lactating rats compared with the virgins and in vasopressin-deficient rats compared with the controls without interaction of the two factors. Vasopressin seems to contribute to the physiological changes observed during lactation mimicking a chronic stress state, but its role in acute HPA axis regulation during lactation seems to be similar to that observed in virgins. If vasopressin is congenitally absent, OT, but not the CRH, compensates for the missing vasopressin; however, the functional restitution remains incomplete.


Assuntos
Sistema Hipotálamo-Hipofisário/fisiopatologia , Lactação/fisiologia , Sistema Hipófise-Suprarrenal/fisiopatologia , Vasopressinas/deficiência , Glândulas Suprarrenais/patologia , Animais , Corticosterona/sangue , Feminino , Hiperplasia/patologia , Modelos Animais , Ocitocina/sangue , Ratos , Ratos Brattleboro , Estresse Fisiológico/fisiologia , Vasopressinas/genética , Vasopressinas/fisiologia
6.
Horm Behav ; 62(4): 539-51, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23006866

RESUMO

Early mother-infant relationships exert important long-term effects in offspring and are disturbed by factors such as postpartum depression. We aimed to clarify if lack of vasopressin influences maternal behavior paralleled by the development of a depressive-like phenotype. We compared vasopressin-deficient Brattleboro mothers with heterozygous and homozygous normal ones. The following parameters were measured: maternal behavior (undisturbed and separation-induced); anxiety by the elevated plus maze; sucrose and saccharin preference and forced swim behavior. Underlying brain areas were examined by c-fos immunocytochemistry among rest and after swim-stress. In another group of rats, vasopressin 2 receptor agonist was used peripherally to exclude secondary changes due to diabetes insipidus. Results showed that vasopressin-deficient rats spend less time licking-grooming their pups through a centrally driven mechanism. There was no difference between genotypes during the pup retrieval test. Vasopressin-deficient mothers tended to explore more the open arms of the plus maze, showed more preference for sucrose and saccharin and struggled more in the forced swim test, suggesting that they act as less depressive. Under basal conditions, vasopressin-deficient mothers had more c-fos expression in the medial preoptic area, shell of nucleus accumbens, paraventricular nucleus of the hypothalamus and amygdala, but not in other structures. In these areas the swim-stress-induced activation was smaller. In conclusion, vasopressin-deficiency resulted in maternal neglect due to a central effect and was protective against depressive-like behavior probably as a consequence of reduced activation of some stress-related brain structures. The conflicting behavioral data underscores the need for more sex specific studies.


Assuntos
Comportamento Animal/fisiologia , Comportamento Materno/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Brattleboro , Vasopressinas/fisiologia , Animais , Mapeamento Encefálico , Sistema Nervoso Central/metabolismo , Depressão/metabolismo , Depressão/fisiopatologia , Depressão/psicologia , Feminino , Comportamento Materno/psicologia , Aprendizagem em Labirinto , Modelos Biológicos , Mães/psicologia , Ratos , Ratos Brattleboro/metabolismo , Ratos Brattleboro/fisiologia , Ratos Transgênicos , Natação/fisiologia , Vasopressinas/genética , Vasopressinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA