Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Microbiome ; 12(1): 147, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39113097

RESUMO

BACKGROUND: Understanding the cause vs consequence relationship of gut inflammation and microbial dysbiosis in inflammatory bowel diseases (IBD) requires a reproducible mouse model of human-microbiota-driven experimental colitis. RESULTS: Our study demonstrated that human fecal microbiota transplant (FMT) transfer efficiency is an underappreciated source of experimental variability in human microbiota-associated (HMA) mice. Pooled human IBD patient fecal microbiota engrafted germ-free (GF) mice with low amplicon sequence variant (ASV)-level transfer efficiency, resulting in high recipient-to-recipient variation of microbiota composition and colitis severity in HMA Il-10-/- mice. In contrast, mouse-to-mouse transfer of mouse-adapted human IBD patient microbiota transferred with high efficiency and low compositional variability resulting in highly consistent and reproducible colitis phenotypes in recipient Il-10-/- mice. Engraftment of human-to-mouse FMT stochastically varied with individual transplantation events more than mouse-adapted FMT. Human-to-mouse FMT caused a population bottleneck with reassembly of microbiota composition that was host inflammatory environment specific. Mouse-adaptation in the inflamed Il-10-/- host reassembled a more aggressive microbiota that induced more severe colitis in serial transplant to Il-10-/- mice than the distinct microbiota reassembled in non-inflamed WT hosts. CONCLUSIONS: Our findings support a model of IBD pathogenesis in which host inflammation promotes aggressive resident bacteria, which further drives a feed-forward process of dysbiosis exacerbated by gut inflammation. This model implies that effective management of IBD requires treating both the dysregulated host immune response and aggressive inflammation-driven microbiota. We propose that our mouse-adapted human microbiota model is an optimized, reproducible, and rigorous system to study human microbiome-driven disease phenotypes, which may be generalized to mouse models of other human microbiota-modulated diseases, including metabolic syndrome/obesity, diabetes, autoimmune diseases, and cancer. Video Abstract.


Assuntos
Modelos Animais de Doenças , Disbiose , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Interleucina-10 , Animais , Humanos , Camundongos , Doenças Inflamatórias Intestinais/microbiologia , Disbiose/microbiologia , Interleucina-10/genética , Colite/microbiologia , Fezes/microbiologia , Colo/microbiologia , Camundongos Knockout , Camundongos Endogâmicos C57BL , Feminino , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Inflamação , Masculino
2.
bioRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38328082

RESUMO

Understanding the cause vs consequence relationship of gut inflammation and microbial dysbiosis in inflammatory bowel diseases (IBD) requires a reproducible mouse model of human-microbiota-driven experimental colitis. Our study demonstrated that human fecal microbiota transplant (FMT) transfer efficiency is an underappreciated source of experimental variability in human microbiota associated (HMA) mice. Pooled human IBD patient fecal microbiota engrafted germ-free (GF) mice with low amplicon sequence variant (ASV)-level transfer efficiency, resulting in high recipient-to-recipient variation of microbiota composition and colitis severity in HMA Il-10-/- mice. In contrast, mouse-to-mouse transfer of mouse-adapted human IBD patient microbiota transferred with high efficiency and low compositional variability resulting in highly consistent and reproducible colitis phenotypes in recipient Il-10-/- mice. Human-to-mouse FMT caused a population bottleneck with reassembly of microbiota composition that was host inflammatory environment specific. Mouse-adaptation in the inflamed Il-10-/- host reassembled a more aggressive microbiota that induced more severe colitis in serial transplant to Il-10-/- mice than the distinct microbiota reassembled in non-inflamed WT hosts. Our findings support a model of IBD pathogenesis in which host inflammation promotes aggressive resident bacteria, which further drives a feed-forward process of dysbiosis exacerbated gut inflammation. This model implies that effective management of IBD requires treating both the dysregulated host immune response and aggressive inflammation-driven microbiota. We propose that our mouse-adapted human microbiota model is an optimized, reproducible, and rigorous system to study human microbiome-driven disease phenotypes, which may be generalized to mouse models of other human microbiota-modulated diseases, including metabolic syndrome/obesity, diabetes, autoimmune diseases, and cancer.

3.
Transplant Cell Ther ; 30(2): 237.e1-237.e9, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37944820

RESUMO

Taxonomic composition of the gut microbiota at the time of neutrophil engraftment is associated with the development of acute gastrointestinal graft-versus-host disease (GI GVHD) in patients undergoing allogeneic hematopoietic stem cell transplantation. However, less is known about the relationship between the gut microbiota and development of steroid-refractory GI GVHD immediately before the onset of disease. Markers of steroid-refractory GI GVHD are needed to identify patients who may benefit from the early initiation of non-corticosteroid-based GVHD treatment. Our aim was to identify differences in taxonomic composition in stool samples from patients without GVHD, with steroid-responsive GVHD and with steroid-refractory GI GVHD to identify predictive microbiome biomarkers of steroid-refractory GI GVHD. We conducted a retrospective case-control, single institution study, performing shotgun metagenomic sequencing on stool samples from patients with (n = 36) and without GVHD (n = 34) matched for time since transplantation. We compared the taxonomic composition of the gut microbiome in those with steroid-sensitive GI GVHD (n = 17) and steroid-refractory GI GVHD (n = 19) to each other and to those without GVHD. We also performed associations between steroid-refractory GI GVHD, gut taxonomic composition, and fecal calprotectin, a marker of GI GVHD to develop composite fecal markers of steroid-refractory GVHD before the onset of GI disease. We found that fecal samples within 30 days of GVHD onset from patients with and without GVHD or with and without steroid-refractory GI GVHD did not differ significantly in Shannon diversity (alpha-diversity) or in overall taxonomic composition (beta-diversity). Although those patients without GVHD had higher relative abundance of Clostridium spp., those with and without steroid-refractory GI GVHD did not significantly differ in taxonomic composition between one another. In our study, fecal calprotectin before disease onset was significantly higher in patients with GVHD compared to those without GVHD and higher in patients with steroid-refractory GI GVHD compared to steroid-sensitive GI GVHD. No taxa were significantly associated with higher levels of calprotectin.


Assuntos
Trato Gastrointestinal , Doença Enxerto-Hospedeiro , Humanos , Estudos Retrospectivos , Doença Enxerto-Hospedeiro/terapia , Complexo Antígeno L1 Leucocitário , Esteroides/uso terapêutico
4.
JCI Insight ; 8(19)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37698918

RESUMO

Obesity promotes triple-negative breast cancer (TNBC), and effective interventions are urgently needed to break the obesity-TNBC link. Epidemiologic studies indicate that bariatric surgery reduces TNBC risk, while evidence is limited or conflicted for weight loss via low-fat diet (LFD) or calorie restriction (CR). Using a murine model of obesity-driven TNBC, we compared the antitumor effects of vertical sleeve gastrectomy (VSG) with LFD, chronic CR, and intermittent CR. Each intervention generated weight and fat loss and suppressed tumor growth relative to obese mice (greatest suppression with CR). VSG and CR regimens exerted both similar and unique effects, as assessed using multiomics approaches, in reversing obesity-associated transcript, epigenetics, secretome, and microbiota changes and restoring antitumor immunity. Thus, in a murine model of TNBC, bariatric surgery and CR each reverse obesity-driven tumor growth via shared and distinct antitumor mechanisms, and CR is superior to VSG in reversing obesity's procancer effects.


Assuntos
Cirurgia Bariátrica , Neoplasias de Mama Triplo Negativas , Humanos , Camundongos , Animais , Restrição Calórica , Modelos Animais de Doenças , Obesidade/complicações , Obesidade/cirurgia
5.
Nutrients ; 15(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37571260

RESUMO

Metabolic and bariatric surgery (MBS) is the most effective long-term treatment for Class III obesity. Reduced dietary intake is considered a behavioral driver of post-surgical weight loss, but limited data have examined this association. Therefore, this study examined prospective, longitudinal relationships between dietary intake and weight loss over 24 months following Roux-en-Y Gastric Bypass and Sleeve Gastrectomy. Relationships between weight loss and dietary intake were examined using a validated 24-h dietary recall method. Associations between total energy/macronutrient intake and weight loss outcomes were assessed at 12-, 18-, and 24-months following MBS, defining patients as "responders" and "suboptimal responders". Consistent with previous literature, 12-month responders and suboptimal responders showed significant associations between weight loss and energy (p = 0.018), protein (p = 0.002), and total fat intake (p = 0.005). However, this study also revealed that many of these associations are no longer significant 24 months post-MBS (p > 0.05), despite consistent weight loss trends. This study suggests a short-term signal between these dietary factors and weight loss outcomes 12 months post-MBS; however, this signal does not persist beyond 12 months. These results are essential for interpreting and designing clinical studies measuring long-term post-surgical weight loss outcomes.


Assuntos
Derivação Gástrica , Laparoscopia , Obesidade Mórbida , Humanos , Derivação Gástrica/métodos , Obesidade Mórbida/cirurgia , Estudos Prospectivos , Dieta , Gastrectomia/métodos , Redução de Peso , Resultado do Tratamento , Laparoscopia/métodos , Estudos Retrospectivos
6.
Clin Nutr ; 41(11): 2490-2499, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36223712

RESUMO

BACKGROUND & AIMS: Ketogenic medium-chain fatty acids (MCFAs) with profound health benefits are commonly found in dairy products, palm kernel oil and coconut oil. We hypothesize that magnesium (Mg) supplementation leads to enhanced gut microbial production of MCFAs and, in turn, increased circulating MCFAs levels. METHODS: We tested this hypothesis in the Personalized Prevention of Colorectal Cancer Trial (PPCCT) (NCT01105169), a double-blind 2 × 2 factorial randomized controlled trial enrolling 240 participants. Six 24-h dietary recalls were performed for all participants at the baseline and during the intervention period. Based on the baseline 24-h dietary recalls, the Mg treatment used a personalized dose of Mg supplementation that would reduce the calcium (Ca): Mg intake ratio to around 2.3. We measured plasma MCFAs, sugars, ketone bodies and tricarboxylic acid cycle (TCA cycle) metabolites using the Metabolon's global Precision Metabolomics™ LC-MS platform. Whole-genome shotgun metagenomics (WGS) sequencing was performed to assess microbiota in stool samples, rectal swabs, and rectal biopsies. RESULTS: Personalized Mg treatment (mean dose 205.58 mg/day with a range from 77.25 to 389.55 mg/day) significantly increased the plasma levels of C7:0, C8:0, and combined C7:0 and C8:0 by 18.45%, 25.28%, and 24.20%, respectively, compared to 14.15%, 10.12%, and 12.62% decreases in the placebo arm. The effects remain significant after adjusting for age, sex, race and baseline level (P = 0.0126, P = 0.0162, and P = 0.0031, respectively) and FDR correction at 0.05 (q = 0.0324 for both C7:0 and C8:0). Mg treatment significantly reduced the plasma level of sucrose compared to the placebo arm (P = 0.0036 for multivariable-adjusted and P = 0.0216 for additional FDR correction model) whereas alterations in daily intakes of sucrose, fructose, glucose, maltose and C8:0 from baseline to the end of trial did not differ between two arms. Mediation analysis showed that combined C7:0 and C8:0 partially mediated the effects of Mg treatment on total and individual ketone bodies (P for indirect effect = 0.0045, 0.0043, and 0.03, respectively). The changes in plasma levels of C7:0 and C8:0 were significantly and positively correlated with the alterations in stool microbiome α diversity (r = 0.51, p = 0.0023 and r = 0.34, p = 0.0497, respectively) as well as in stool abundance for the signatures of MCFAs-related microbiota with acyl-ACP thioesterase gene producing C7:0 (r = 0.46, p = 0.0067) and C8:0 (r = 0.49, p = 0.003), respectively, following Mg treatment. CONCLUSIONS: Optimizing Ca:Mg intake ratios to around 2.3 through 12-week personalized Mg supplementation leads to increased circulating levels of MCFAs (i.e. C7:0 and C8:0), which is attributed to enhanced production from gut microbial fermentation and, maybe, sucrose consumption.


Assuntos
Microbioma Gastrointestinal , Humanos , Óleo de Coco , Cálcio , Maltose , Magnésio , Ácidos Graxos/metabolismo , Corpos Cetônicos , Sacarose , Frutose , Glucose
7.
Clin Transl Gastroenterol ; 13(10): e00528, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36094869

RESUMO

INTRODUCTION: Microscopic colitis is a relatively common cause of chronic diarrhea and may be linked to luminal factors. Given the essential role of the microbiome in human gut health, analysis of microbiome changes associated with microscopic colitis could provide insights into the development of the disease. METHODS: We enrolled patients who underwent colonoscopy for diarrhea. An experienced pathologist classified patients as having microscopic colitis (n = 52) or controls (n = 153). Research biopsies were taken from the ascending (ASC) and descending (DES) colon, and the microbiome was characterized with Illumina sequencing. We analyzed the associations between microscopic colitis and microbiome with a series of increasingly complex models adjusted for a range of demographic and health factors. RESULTS: We found that alpha diversity was significantly lower in cases with microscopic colitis compared with that in controls in the DES colon microbiome. In the DES colon, a series of models that adjusted for an increasing number of covariates found taxa significantly associated with microscopic colitis, including Proteobacteria that was enriched in cases and Collinsella that was enriched in controls. While the alpha diversity and taxa were not significantly associated with microscopic colitis in the ASC colon microbiome, the inference P values based on ASC and DES microbiomes were highly correlated. DISCUSSION: Our study demonstrates an altered microbiome in cases with microscopic colitis compared with that in controls. Because both the cases and controls experienced diarrhea, we have identified candidate taxa that could be mechanistically responsible for the development of microscopic colitis independent of changes to the microbial community caused by diarrhea.


Assuntos
Colite Microscópica , Microbiota , Humanos , Colite Microscópica/epidemiologia , Colite Microscópica/complicações , Colonoscopia/efeitos adversos , Diarreia/etiologia , Diarreia/patologia , Biópsia/efeitos adversos
8.
JCI Insight ; 7(7)2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35239511

RESUMO

BACKGROUNDGut decontamination (GD) can decrease the incidence and severity of acute graft-versus-host disease (aGVHD) in murine models of allogeneic hematopoietic cell transplantation (HCT). In this pilot study, we examined the impact of GD on gut microbiome composition and the incidence of aGVHD in HCT patients.METHODSWe randomized 20 patients undergoing allogeneic HCT to receive (GD) or not receive (no-GD) oral vancomycin-polymyxin B from day -5 through neutrophil engraftment. We evaluated shotgun metagenomic sequencing of serial stool samples to compare the composition and diversity of the gut microbiome between study arms. We assessed clinical outcomes in the 2 arms and performed strain-specific analyses of pathogens that caused bloodstream infections (BSI).RESULTSThe 2 arms did not differ in the predefined primary outcome of Shannon diversity of the gut microbiome at 2 weeks post-HCT (genus, P = 0.8; species, P = 0.44) or aGVHD incidence (P = 0.58). Immune reconstitution of T cell and B cell subsets was similar between groups. Five patients in the no-GD arm had 8 BSI episodes versus 1 episode in the GD arm (P = 0.09). The BSI-causing pathogens were traceable to the gut in 7 of 8 BSI episodes in the no-GD arm, including Staphylococcus species.CONCLUSIONWhile GD did not differentially affect Shannon diversity or clinical outcomes, our findings suggest that GD may protect against gut-derived BSI in HCT patients by decreasing the prevalence or abundance of gut pathogens.TRIAL REGISTRATIONClinicalTrials.gov NCT02641236.FUNDINGNIH, Damon Runyon Cancer Research Foundation, V Foundation, Sloan Foundation, Emerson Collective, and Stanford Maternal & Child Health Research Institute.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Microbiota , Animais , Criança , Descontaminação , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Camundongos , Projetos Piloto
9.
Transplant Cell Ther ; 27(11): 932.e1-932.e11, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34274493

RESUMO

Alterations of the gut microbiota after allogeneic hematopoietic cell transplantation (allo-HCT) are a key factor in the development of transplant-related complications such as graft-versus-host disease (GVHD). Interventions that preserve the gut microbiome hold promise to improve HCT-associated morbidity and mortality. Murine models demonstrate that prebiotics such as fructo-oligosaccharides (FOSs) may increase gut levels of short-chain fatty acids (SCFAs) such as butyrate and consequently induce proliferation of immunomodulatory FOXP3+CD4+ regulatory T cells (Tregs), which impact GVHD risk. We conducted a pilot phase I trial to investigate the maximum tolerated dose of FOS in patients undergoing reduced-intensity allo-HCT (n = 15) compared with concurrent controls (n = 16). We administered the FOS starting at pretransplant conditioning and continuing for a total of 21 days. We characterized the gut microbiome using shotgun metagenomic sequencing, measured stool short-chain fatty acids (SCFAs) using liquid chromatography-mass spectrometry, and determined peripheral T cell concentrations using cytometry by time-of-flight. We found that FOS was safe and well-tolerated at 10 g/d without significant adverse effects in patients undergoing allo-HCT. Community-level gut microbiota composition differed significantly on the day of transplant (day 0) between patients receiving FOS and concurrent controls; however, FOS-associated alterations of the gut microbiota were not sustained after transplant. Although the impact of FOS was fleeting, transplantation itself impacted a substantial number of taxa over time. In our small pilot trial, no significant differences were observed in gut microbial metabolic pathways, stool SCFAs, or peripheral Tregs, although Tregs trended higher in those patients who received FOS. A marker of CD4+ T cell activation (namely, CTLA4+) was significantly higher in patients receiving FOS, whereas a non-significant trend existed for FOP3+CD4+ Treg cells, which were higher in those receiving FOS compared with controls. FOS is well tolerated at 10 g/d in patients undergoing reduced-intensity allo-HCT. Although the alterations in gut microbiota and peripheral immune cell composition in those receiving FOS are intriguing, additional studies are required to investigate the use of prebiotics in HCT recipients.


Assuntos
Microbioma Gastrointestinal , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Animais , Doença Enxerto-Hospedeiro/prevenção & controle , Humanos , Camundongos , Oligossacarídeos , Prebióticos
10.
Gut Microbes ; 13(1): 1930872, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34159880

RESUMO

Bariatric surgery induces significant shifts in the gut microbiota which could potentially contribute to weight loss and metabolic benefits. The aim of this study was to characterize a microbial signature following Roux-en-Y Gastric bypass (RYGB) surgery using novel and existing gut microbiota sequence data. We generated 16S rRNA gene and metagenomic sequences from fecal samples from patients undergoing RYGB surgery (n = 61 for 16S rRNA gene and n = 135 for metagenomics) at pre-surgical baseline and one, six, and twelve-month post-surgery. We compared these data with three smaller publicly available 16S rRNA gene and one metagenomic datasets from patients who also underwent RYGB surgery. Linear mixed models and machine learning approaches were used to examine the presence of a common microbial signature across studies. Comparison of our new sequences with previous longitudinal studies revealed strikingly similar profiles in both fecal microbiota composition (r = 0.41 ± 0.10; p < .05) and metabolic pathways (r = 0.70 ± 0.05; p < .001) early after surgery across multiple datasets. Notably, Veillonella, Streptococcus, Gemella, Fusobacterium, Escherichia/Shigella, and Akkermansia increased after surgery, while Blautia decreased. Machine learning approaches revealed that the replicable gut microbiota signature associated with RYGB surgery could be used to discriminate pre- and post-surgical samples. Opportunistic pathogen abundance also increased post-surgery in a consistent manner across cohorts. Our study reveals a robust microbial signature involving many commensal and pathogenic taxa and metabolic pathways early after RYGB surgery across different studies and sites. Characterization of the effects of this robust microbial signature on outcomes of bariatric surgery could provide insights into the development of microbiome-based interventions for predicting or improving outcomes following surgery.


Assuntos
Bactérias/isolamento & purificação , Microbioma Gastrointestinal , Obesidade Mórbida/microbiologia , Obesidade Mórbida/cirurgia , Adulto , Bactérias/classificação , Bactérias/genética , Cirurgia Bariátrica , Estudos de Coortes , DNA Bacteriano/genética , Fezes/microbiologia , Feminino , Humanos , Estudos Longitudinais , Masculino , Metagenômica , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética
11.
J Gastrointestin Liver Dis ; 30(1): 17-24, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33723541

RESUMO

BACKGROUND AND AIMS: Changes in the esophageal microbiome have been reported in children with eosinophilic esophagitis (EoE), but few data exist for adults. We aimed to determine whether the esophageal microbiome differs in adults with and without EoE. METHODS: In a prospective cohort study, adults undergoing outpatient endoscopy were enrolled as incident EoE cases or non-EoE controls. Clinical, endoscopic, and histologic data were collected. An esophageal biopsy was utilized for microbiome analysis. Bacterial DNA was extracted and the V3-V4 region of the 16S rRNA gene was amplified and sequenced. Analyses were performed comparing microbiome features for cases and controls, and within cases for disease features, with correction for multiple hypothesis testing. RESULTS: A total of 24 incident EoE cases (mean age 40 years; 63% male; 100% white; 97 eos/hpf) and 25 controls (mean age 48, 36% male; 76% white; 1 eos/hpf) were analyzed. Principal coordinate analysis ordination failed to distinguish cases from controls. There were no microbiome differences within EoE cases based on clinical phenotype, presence of atopy, or endoscopic features. Use of proton pump inhibitors (PPIs), however, was significantly associated with 5 taxa including SR1 at the phylum level and Burkholderia at the genus level. CONCLUSIONS: There were no significant differences in the esophageal microbiome between newly diagnosed EoE cases and non-EoE controls in adults, or within EoE cases based on clinical features. However, given the strong rationale for the esophageal microbiome in EoE pathogenesis, future studies should explicitly consider the presence of PPIs as a confounding feature.


Assuntos
Esofagite Eosinofílica , Microbiota , Adulto , Enterite , Eosinofilia , Esofagite Eosinofílica/diagnóstico , Feminino , Gastrite , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Inibidores da Bomba de Prótons/efeitos adversos , RNA Ribossômico 16S/genética
12.
J Nutr ; 151(6): 1426-1435, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33694368

RESUMO

BACKGROUND: Oat has been widely accepted as a key food for human health. It is becoming increasingly evident that individual differences in metabolism determine how different individuals benefit from diet. Both host genetics and the gut microbiota play important roles on the metabolism and function of dietary compounds. OBJECTIVES: To investigate the mechanism of individual variations in response to whole-grain (WG) oat intake. METHODS: We used the combination of in vitro incubation assays with human gut microbiota, mouse and human S9 fractions, chemical analyses, germ-free (GF) mice, 16S rRNA sequencing, gnotobiotic techniques, and a human feeding study. RESULTS: Avenanthramides (AVAs), the signature bioactive polyphenols of WG oat, were not metabolized into their dihydro forms, dihydro-AVAs (DH-AVAs), by both human and mouse S9 fractions. DH-AVAs were detected in the colon and the distal regions but not in the proximal and middle regions of the perfused mouse intestine, and were in specific pathogen-free (SPF) mice but not in GF mice. A kinetic study of humans fed oat bran showed that DH-AVAs reached their maximal concentrations at much later time points than their corresponding AVAs (10.0-15.0 hours vs. 4.0-4.5 hours, respectively). We observed interindividual variations in the metabolism of AVAs to DH-AVAs in humans. Faecalibacterium prausnitzii was identified as the individual bacterium to metabolize AVAs to DH-AVAs by 16S rRNA sequencing analysis. Moreover, as opposed to GF mice, F. prausnitzii-monocolonized mice were able to metabolize AVAs to DH-AVAs. CONCLUSIONS: These findings demonstrate that the presence of intestinal F. prausnitzii is indispensable for proper metabolism of AVAs in both humans and mice. We propose that the abundance of F. prausnitzii can be used to subcategorize individuals into AVA metabolizers and nonmetabolizers after WG oat intake. This study was registered at clinicaltrials.gov as NCT04335435.


Assuntos
Avena , Faecalibacterium prausnitzii , Microbioma Gastrointestinal , ortoaminobenzoatos/metabolismo , Animais , Avena/química , Dieta , Humanos , Camundongos , RNA Ribossômico 16S/genética
13.
Hypertension ; 77(2): 706-717, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33342240

RESUMO

Animal studies have revealed gut microbial and metabolic pathways of blood pressure (BP) regulation, yet few epidemiological studies have collected microbiota and metabolomics data in the same individuals. In a population-based, Chinese cohort who did not report antihypertension medication use (30-69 years, 54% women), thus minimizing BP treatment effects, we examined multivariable-adjusted (eg, diet, physical activity, smoking, kidney function), cross-sectional associations between measures of gut microbiota (16S rRNA [ribosomal ribonucleic acid], N=1003), and plasma metabolome (liquid chromatography-mass spectrometry, N=434) with systolic (SBP, mean [SD]=126.0 [17.4] mm Hg) and diastolic BP (DBP [80.7 (10.7) mm Hg]). We found that the overall microbial community assessed by principal coordinate analysis varied by SBP and DBP (permutational multivariate ANOVA P<0.05). To account for strong correlations across metabolites, we first examined metabolite patterns derived from principal component analysis and found that a lipid pattern was positively associated with SBP (linear regression coefficient [95% CI] per 1 SD pattern score: 2.23 [0.72-3.74] mm Hg) and DBP (1.72 [0.81-2.63] mm Hg). Among 1104 individual metabolites, 34 and 39 metabolites were positively associated with SBP and DBP (false discovery rate-adjusted linear model P<0.05), respectively, including linoleate, palmitate, dihomolinolenate, 8 sphingomyelins, 4 acyl-carnitines, and 2 phosphatidylinositols. Subsequent pathway analysis showed that metabolic pathways of long-chain saturated acylcarnitine, phosphatidylinositol, and sphingomyelins were associated with SBP and DBP (false discovery rate-adjusted Fisher exact test P<0.05). Our results suggest potential roles of microbiota and metabolites in BP regulation to be followed up in prospective and clinical studies.


Assuntos
Pressão Sanguínea/fisiologia , Microbioma Gastrointestinal/fisiologia , Hipertensão/metabolismo , Metaboloma/fisiologia , Adulto , Idoso , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
14.
mSystems ; 5(1)2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937674

RESUMO

Disrupted interactions between host and intestinal bacteria are implicated in colorectal cancer (CRC) development. However, activities derived from these bacteria and their interplay with the host are unclear. Here, we examine this interplay by performing mouse and microbiota RNA sequencing on colon tissues and 16S and small RNA sequencing on stools from germfree (GF) and gnotobiotic ApcMin Δ 850/+ ;Il10-/- mice associated with microbes from biofilm-positive human CRC tumor (BF+T) and biofilm-negative healthy (BF-bx) tissues. The bacteria in BF+T mice differentially expressed (DE) >2,900 genes, including genes related to bacterial secretion, virulence, and biofilms but affected only 62 host genes. Small RNA sequencing of stools from these cohorts revealed eight significant DE host microRNAs (miRNAs) based on biofilm status and several miRNAs that correlated with bacterial taxon abundances. Additionally, computational predictions suggest that some miRNAs preferentially target bacterial genes while others primarily target mouse genes. 16S rRNA sequencing of mice that were reassociated with mucosa-associated communities from the initial association revealed a set of 13 bacterial genera associated with cancer that were maintained regardless of whether the reassociation inoculums were initially obtained from murine proximal or distal colon tissues. Our findings suggest that complex interactions within bacterial communities affect host-derived miRNA, bacterial composition, and CRC development.IMPORTANCE Bacteria and bacterial biofilms have been implicated in colorectal cancer (CRC), but it is still unclear what genes these microbial communities express and how they influence the host. MicroRNAs regulate host gene expression and have been explored as potential biomarkers for CRC. An emerging area of research is the ability of microRNAs to impact growth and gene expression of members of the intestinal microbiota. This study examined the bacteria and bacterial transcriptome associated with microbes derived from biofilm-positive human cancers that promoted tumorigenesis in a murine model of CRC. The murine response to different microbial communities (derived from CRC patients or healthy people) was evaluated through RNA and microRNA sequencing. We identified a complex interplay between biofilm-associated bacteria and the host during CRC in mice. These findings may lead to the development of new biomarkers and therapeutics for identifying and treating biofilm-associated CRCs.

15.
Gut Microbes ; 11(1): 32-50, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31179826

RESUMO

Iron deficiency, a common comorbidity of gastrointestinal inflammatory disorders such as inflammatory bowel diseases (IBD), is often treated with oral iron supplementation. However, the safety of oral iron supplementation remains controversial because of its association with exacerbated disease activity in a subset of IBD patients. Because iron modulates bacterial growth and function, one possible mechanism by which iron may exacerbate inflammation in susceptible hosts is by modulating the intestinal microbiota. We, therefore, investigated the impact of dietary iron on the intestinal microbiota, utilizing the conventionalization of germ-free mice as a model of a microbial community in compositional flux to recapitulate the instability of the IBD-associated intestinal microbiota. Our findings demonstrate that altering intestinal iron availability during community assembly modulated the microbiota in non-inflamed wild type (WT) and colitis-susceptible interleukin-10-deficient (Il10-/-) mice. Depletion of luminal iron availability promoted luminal compositional changes associated with dysbiotic states irrespective of host genotype, including an expansion of Enterobacteriaceae such as Escherichia coli. Mechanistic in vitro growth competitions confirmed that high-affinity iron acquisition systems in E. coli enhance its abundance over other bacteria in iron-restricted conditions, thereby enabling pathobiont iron scavenging during dietary iron restriction. In contrast, distinct luminal community assembly was observed with dietary iron supplementation in WT versus Il10-/- mice, suggesting that the effects of increased iron on the microbiota differ with host inflammation status. Taken together, shifts in dietary iron intake during community assembly modulate the ecological structure of the intestinal microbiota and is dependent on host genotype and inflammation status.


Assuntos
Colite/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Doenças Inflamatórias Intestinais/microbiologia , Intestinos/microbiologia , Ferro da Dieta/farmacologia , Animais , Colite/tratamento farmacológico , Colite/genética , Colo/microbiologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Disbiose , Enterobacteriaceae/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Predisposição Genética para Doença , Inflamação/genética , Inflamação/microbiologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/genética , Interleucina-10/genética , Intestinos/patologia , Camundongos , Camundongos Transgênicos
16.
J Clin Invest ; 129(4): 1699-1712, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30855275

RESUMO

Mucus-invasive bacterial biofilms are identified on the colon mucosa of approximately 50% of colorectal cancer (CRC) patients and approximately 13% of healthy subjects. Here, we test the hypothesis that human colon biofilms comprise microbial communities that are carcinogenic in CRC mouse models. Homogenates of human biofilm-positive colon mucosa were prepared from tumor patients (tumor and paired normal tissues from surgical resections) or biofilm-positive biopsies from healthy individuals undergoing screening colonoscopy; homogenates of biofilm-negative colon biopsies from healthy individuals undergoing screening colonoscopy served as controls. After 12 weeks, biofilm-positive, but not biofilm-negative, human colon mucosal homogenates induced colon tumor formation in 3 mouse colon tumor models (germ-free ApcMinΔ850/+;Il10-/- or ApcMinΔ850/+ and specific pathogen-free ApcMinΔ716/+ mice). Remarkably, biofilm-positive communities from healthy colonoscopy biopsies induced colon inflammation and tumors similarly to biofilm-positive tumor tissues. By 1 week, biofilm-positive human tumor homogenates, but not healthy biopsies, displayed consistent bacterial mucus invasion and biofilm formation in mouse colons. 16S rRNA gene sequencing and RNA-Seq analyses identified compositional and functional microbiota differences between mice colonized with biofilm-positive and biofilm-negative communities. These results suggest human colon mucosal biofilms, whether from tumor hosts or healthy individuals undergoing screening colonoscopy, are carcinogenic in murine models of CRC.


Assuntos
Biofilmes , Carcinogênese , Colo/microbiologia , Neoplasias do Colo/microbiologia , Microbioma Gastrointestinal , Neoplasias Experimentais/microbiologia , Animais , Colo/metabolismo , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Humanos , Camundongos , Camundongos Knockout , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia
17.
Obes Surg ; 29(4): 1259-1267, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30604078

RESUMO

BACKGROUND: The aim of the study was to investigate the role of the gut microbiota in weight regain or suboptimal weight loss following Roux-en-Y gastric bypass (RYGB). MATERIALS AND METHODS: The gut microbiota composition in post-RYGB patients who experienced successful weight loss (SWL, n = 6), post-RYGB patients who experienced poor weight loss (PWL, n = 6), and non-surgical controls (NSC, n = 6) who were age- and BMI-matched to the SWL group (NSC, n = 6) were characterized through 16S rRNA gene sequencing. To further investigate the impact of the gut microbiota on weight profile, human fecal samples were transplanted into antibiotic-treated mice. RESULTS: Orders of Micrococcales and Lactobacillales were enriched in SWL and PWL groups compared to the NSC group. No significant difference was observed in the gut microbiota composition between PWL and SWL patients. However, transfer of the gut microbiota from human patients into antibiotic-treated mice resulted in significantly greater weight gain in PWL recipient mice compared to SWL recipient mice. A few genera that were effectively transferred from humans to mice were associated with weight gain in mice. Among them, Barnesiella was significantly higher in PWL recipient mice compared to SWL and NSC recipient mice. CONCLUSION: These results indicate that the gut microbiota are at least functionally, if not compositionally, different between PWL and SWL patients. Some taxa may contribute to weight gain after surgery. Future studies will need to determine the molecular mechanisms behind the effects of the gut bacteria on weight regain after RYGB.


Assuntos
Derivação Gástrica , Microbioma Gastrointestinal/fisiologia , Obesidade Mórbida/microbiologia , Obesidade Mórbida/cirurgia , Redução de Peso/fisiologia , Adulto , Animais , Fezes/microbiologia , Feminino , Derivação Gástrica/métodos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Aumento de Peso/fisiologia
18.
Carcinogenesis ; 39(8): 1068-1078, 2018 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-29846515

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer death in the United States yet data are scant regarding host factors influencing pancreatic carcinogenesis. Increasing evidence support the role of the host microbiota in carcinogenesis but its role in PDAC is not well established. Herein, we report that antibiotic-mediated microbial depletion of KrasG12D/PTENlox/+ mice showed a decreased proportion of poorly differentiated tumors compared to microbiota-intact KrasG12D/PTENlox/+ mice. Subsequent 16S rRNA PCR showed that ~50% of KrasG12D/PTENlox/+ mice with PDAC harbored intrapancreatic bacteria. To determine if a similar observation in humans correlates with presence of PDAC, benign and malignant human pancreatic surgical specimens demonstrated a microbiota by 16S bacterial sequencing and culture confirmation. However, the microbial composition did not differentiate PDAC from non-PDAC tissue. Furthermore, murine pancreas did not naturally acquire a pancreatic microbiota, as germ-free mice transferred to specific pathogen-free housing failed to acquire intrapancreatic bacteria over time, which was not augmented by a murine model of colitis. Finally, antibiotic-mediated microbial depletion of Nod-SCID mice, compared to microbiota-intact, showed increased time to PDAC xenograft formation, smaller tumors, and attenuated growth. Interestingly, both xenograft cohorts were devoid of intratumoral bacteria by 16S rRNA PCR, suggesting that intrapancreatic/intratumoral microbiota is not the sole driver of PDAC acceleration. Xenografts from microbiota-intact mice demonstrated innate immune suppression by immunohistochemistry and differential regulation of oncogenic pathways as determined by RNA sequencing. Our work supports a long-distance role of the intestinal microbiota on PDAC progression and opens new research avenues regarding pancreatic carcinogenesis.


Assuntos
Carcinogênese/imunologia , Carcinoma Ductal Pancreático/imunologia , Microbioma Gastrointestinal/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Neoplasias Pancreáticas/imunologia , Adulto , Idoso , Animais , Antibacterianos/administração & dosagem , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Carcinogênese/efeitos dos fármacos , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/cirurgia , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Vida Livre de Germes , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Humanos , Intestinos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Pessoa de Meia-Idade , Pâncreas/microbiologia , Pâncreas/patologia , Pâncreas/cirurgia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/cirurgia , RNA Ribossômico 16S/isolamento & purificação , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Sci Rep ; 8(1): 4951, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29563543

RESUMO

Colonic diverticula are protrusions of the mucosa through weak areas of the colonic musculature. The etiology of diverticulosis is poorly understood, but could be related to gut bacteria. Using mucosal biopsies from the sigmoid colon of 226 subjects with and 309 subjects without diverticula during first-time screening colonoscopy, we assessed whether individuals with incidental colonic diverticulosis have alternations in the adherent bacterial communities in the sigmoid colon. We found little evidence of substantial associations between the microbial community and diverticulosis among cases and controls. Comparisons of bacterial abundances across all taxonomic levels showed differences for phylum Proteobacteria (p = 0.038) and family Comamonadaceae (p = 0.035). The r-squared values measuring the strength of these associations were very weak, however, with values ~2%. There was a similarly small association between the abundance of each taxa and total diverticula counts. Cases with proximal only diverticula and distal only diverticula likewise showed little difference in overall microbiota profiles. This large study suggests little association between diverticula and the mucosal microbiota overall, or by diverticula number and location. We conclude that the mucosal adherent microbiota community composition is unlikely to play a substantial role in development of diverticulosis.


Assuntos
Colo Sigmoide/microbiologia , Diverticulose Cólica/microbiologia , Microbioma Gastrointestinal/fisiologia , Mucosa Intestinal/microbiologia , Idoso , Idoso de 80 Anos ou mais , Bactérias , Biópsia , Estudos de Casos e Controles , Colo Sigmoide/diagnóstico por imagem , Colo Sigmoide/patologia , Colonoscopia , Comamonadaceae/isolamento & purificação , Comamonadaceae/fisiologia , Diverticulose Cólica/diagnóstico , Diverticulose Cólica/patologia , Feminino , Humanos , Mucosa Intestinal/diagnóstico por imagem , Mucosa Intestinal/patologia , Masculino , Pessoa de Meia-Idade , Proteobactérias/isolamento & purificação , Proteobactérias/fisiologia , Índice de Gravidade de Doença
20.
Dis Model Mech ; 11(2)2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29361512

RESUMO

Crohn's disease (CD) represents a chronic inflammatory disorder of the intestinal tract. Several susceptibility genes have been linked to CD, though their precise role in the pathogenesis of this disorder remains unclear. Immunity-related GTPase M (IRGM) is an established risk allele in CD. We have shown previously that conventionally raised (CV) mice lacking the IRGM ortholog, Irgm1 exhibit abnormal Paneth cells (PCs) and increased susceptibility to intestinal injury. In the present study, we sought to utilize this model system to determine if environmental conditions impact these phenotypes, as is thought to be the case in human CD. To accomplish this, wild-type and Irgm1-/- mice were rederived into specific pathogen-free (SPF) and germ-free (GF) conditions. We next assessed how these differential housing environments influenced intestinal injury patterns, and epithelial cell morphology and function in wild-type and Irgm1-/- mice. Remarkably, in contrast to CV mice, SPF Irgm1-/- mice showed only a slight increase in susceptibility to dextran sodium sulfate-induced inflammation. SPF Irgm1-/- mice also displayed minimal abnormalities in PC number and morphology, and in antimicrobial peptide expression. Goblet cell numbers and epithelial proliferation were also unaffected by Irgm1 in SPF conditions. No microbial differences were observed between wild-type and Irgm1-/- mice, but gut bacterial communities differed profoundly between CV and SPF mice. Specifically, Helicobacter sequences were significantly increased in CV mice; however, inoculating SPF Irgm1-/- mice with Helicobacter hepaticus was not sufficient to transmit a pro-inflammatory phenotype. In summary, our findings suggest the impact of Irgm1-deficiency on susceptibility to intestinal inflammation and epithelial function is critically dependent on environmental influences. This work establishes the importance of Irgm1-/- mice as a model to elucidate host-environment interactions that regulate mucosal homeostasis and intestinal inflammatory responses. Defining such interactions will be essential for developing novel preventative and therapeutic strategies for human CD.


Assuntos
Meio Ambiente , Proteínas de Ligação ao GTP/deficiência , Inflamação/patologia , Intestinos/patologia , Celulas de Paneth/patologia , Animais , Biodiversidade , Proliferação de Células , Colite/microbiologia , Colite/patologia , Sulfato de Dextrana , Suscetibilidade a Doenças , Células Epiteliais/patologia , Proteínas de Ligação ao GTP/metabolismo , Microbioma Gastrointestinal , Genótipo , Células Caliciformes/patologia , Helicobacter/fisiologia , Inflamação/microbiologia , Intestinos/microbiologia , Camundongos Knockout , Celulas de Paneth/metabolismo , Fenótipo , Organismos Livres de Patógenos Específicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA