Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(22)2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37998340

RESUMO

Oxidative stress and impaired mitophagy are the hallmarks of cardiomyocyte senescence. Specifically, a decrease in mitophagic flux leads to the accumulation of damaged mitochondria and the development of senescence through increased ROS and other mediators. In this study, we describe the preventive role of A5+, a mix of polyphenols and other micronutrients, in doxorubicin (DOXO)-induced senescence of H9C2 cells. Specifically, H9C2 cells exposed to DOXO showed an increase in the protein expression proteins of senescence-associated genes, p21 and p16, and a decrease in the telomere binding factors TRF1 and TRF2, indicative of senescence induction. Nevertheless, A5+ pre-treatment attenuated the senescent-like cell phenotype, as evidenced by inhibition of all senescent markers and a decrease in SA-ß-gal staining in DOXO-treated H9C2 cells. Importantly, A5+ restored the LC3 II/LC3 I ratio, Parkin and BNIP3 expression, therefore rescuing mitophagy, and decreased ROS production. Further, A5+ pre-treatment determined a ripolarization of the mitochondrial membrane and improved basal respiration. A5+-mediated protective effects might be related to its ability to activate mitochondrial SIRT3 in synergy with other micronutrients, but in contrast with SIRT4 activation. Accordingly, SIRT4 knockdown in H9C2 cells further increased MnSOD activity, enhanced mitophagy, and reduced ROS generation following A5+ pre-treatment and DOXO exposure compared to WT cells. Indeed, we demonstrated that A5+ protects H9C2 cells from DOXO-induced senescence, establishing a new specific role for A5+ in controlling mitochondrial quality control by restoring SIRT3 activity and mitophagy, which provided a molecular basis for the development of therapeutic strategies against cardiomyocyte senescence.


Assuntos
Mitofagia , Sirtuína 3 , Mitofagia/genética , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 3/genética , Micronutrientes , Senescência Celular , Doxorrubicina/farmacologia
2.
Exp Hematol Oncol ; 12(1): 82, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749607

RESUMO

BACKGROUND: The pattern recognition receptor long pentraxin-3 (PTX3) plays conflicting roles in cancer by acting as an oncosuppressor or as a pro-tumor mediator depending on tumor context. Triple negative breast cancer (TNBC) represents the most aggressive histotype of breast cancer, characterized by the lack of efficacious therapeutic targets/approaches and poor prognosis. Thus, the characterization of new molecular pathways and/or alternative druggable targets is of great interest in TNBC. METHODS: The expression of PTX3 in BC tumor samples and in BC cell lines has been analyzed using the Gene Expression-Based Outcome for Breast Cancer Online (GOBO), qPCR, Western blot and ELISA assay. The contribution of tumor and stromal cells to PTX3 production in TNBC was assessed by analyzing single cell RNA sequencing data and RNAscope performed on TNBC tumor samples. In order to investigate the effects of PTX3 in TNBC, different cell lines were engineered to knock-down (MDA-MB-231 and BT549 cells) or overexpress (MDA-MB-468 and E0771 cells) PTX3. Finally, using these engineered cells, in vitro (including gene expression profiling and gene set enrichment analyses) and in vivo (orthotopic tumor models in immune-compromised and immune competent mice) analyses were performed to assess the role and the molecular mechanism(s) exerted by PTX3 in TNBC. RESULTS: In silico and experimental data indicate that PTX3 is mainly produced by tumor cells in TNBC and that its expression levels correlate with tumor stage. Accordingly, gene expression and in vitro results demonstrate that PTX3 overexpression confers a high aggressive/proliferative phenotype and fosters stem-like features in TNBC cells. Also, PTX3 expression induces a more tumorigenic potential when TNBC cells are grafted orthotopically in vivo. Conversely, PTX3 downregulation results in a less aggressive behavior of TNBC cells. Mechanistically, our data reveal that PTX3 drives the activation of the pro-tumorigenic Toll-like receptor 4 (TLR4) signaling pathway in TNBC, demonstrating for the first time that the PTX3/TLR4 autocrine stimulation loop contributes to TNBC aggressiveness and that TLR4 inhibition significantly impacts the growth of PTX3-producing TNBC cells. CONCLUSION: Altogether, these data shed light on the role of tumor-produced PTX3 in TNBC and uncover the importance of the PTX3/TLR4 axis for therapeutic and prognostic exploitation in TNBC.

3.
Nat Commun ; 13(1): 5191, 2022 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-36057632

RESUMO

Epithelial-mesenchymal transition (EMT) is a complex and pivotal process involved in organogenesis and is related to several pathological processes, including cancer and fibrosis. During heart development, EMT mediates the conversion of epicardial cells into vascular smooth muscle cells and cardiac interstitial fibroblasts. Here, we show that the oncogenic transcription factor EB (TFEB) is a key regulator of EMT in epicardial cells and that its genetic overexpression in mouse epicardium is lethal due to heart defects linked to impaired EMT. TFEB specifically orchestrates the EMT-promoting function of transforming growth factor (TGF) ß, and this effect results from activated transcription of thymine-guanine-interacting factor (TGIF)1, a TGFß/Smad pathway repressor. The Tgif1 promoter is activated by TFEB, and in vitro and in vivo findings demonstrate its increased expression when Tfeb is overexpressed. Furthermore, Tfeb overexpression in vitro prevents TGFß-induced EMT, and this effect is abolished by Tgif1 silencing. Tfeb loss of function, similar to that of Tgif1, sensitizes cells to TGFß, inducing an EMT response to low doses of TGFß. Together, our findings reveal an unexpected function of TFEB in regulating EMT, which might provide insights into injured heart repair and control of cancer progression.


Assuntos
Transição Epitelial-Mesenquimal , Fator de Crescimento Transformador beta , Animais , Células Cultivadas , Transição Epitelial-Mesenquimal/fisiologia , Camundongos , Organogênese , Pericárdio/metabolismo , Fator de Crescimento Transformador beta/metabolismo
4.
Int J Mol Sci ; 22(9)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067060

RESUMO

Recent findings suggest that epithelial to mesenchymal transition (EMT), a key step during heart development, is involved in cardiac tissue repair following myocardial infarction (MI). MicroRNAs (miRNAs) act as key regulators in EMT processes; however, the mechanisms by which miRNAs target epicardial EMT remain largely unknown. Here, by using an in vitro model of epicardial EMT, we investigated the role of miRNAs as regulators of this process and their potential targets. EMT was induced in murine epicardial-mesothelial cells (EMCs) through TGF ß1 treatment for 48, 72, and 96 h as indicated by the expression of EMT-related genes by qRT-PCR, WB, and immunofluorescence. Further, enhanced expression of stemness genes was also detected. Among several EMT-related miRNAs, miR-200c-3p expression resulted as the most strongly suppressed. Interestingly, we also found a significant upregulation of Follistatin-related protein 1 (FSTL1), a miR-200c predicted target already identified as a potent cardiogenic factor produced by epicardial cells that promotes regeneration following MI. Dual-luciferase reporter assay demonstrated that miR-200c-3p directly targeted the 3'-untranslated region of FSTL1 in EMCs. Consistently, WB analysis showed that knockdown of miR-200c-3p significantly increased FSTL1 expression, whereas overexpression of miR-200c-3p counteracted TGF ß1-mediated FSTL1 upregulation. Importantly, FSTL1 silencing maintained epithelial features in EMCs, despite EMT induction by TGF ß1, and attenuated EMT-associated traits, including migration and stemness. In conclusion, epicardial FSTL1, an important cardiogenic factor in its secreted form, induces EMT, stemness, and migration of EMCs in a miR-200c-3p dependent pathway.


Assuntos
Transição Epitelial-Mesenquimal , Epitélio/metabolismo , Proteínas Relacionadas à Folistatina/metabolismo , MicroRNAs/metabolismo , Pericárdio/patologia , Animais , Biomarcadores/metabolismo , Transição Epitelial-Mesenquimal/genética , Feminino , Mesoderma/patologia , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fator de Crescimento Transformador beta1/farmacologia
5.
Cancers (Basel) ; 12(3)2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32192047

RESUMO

Cancer treatment has made significant progress in the cure of different types of tumors. Nevertheless, its clinical use is limited by unwanted cardiotoxicity. Aside from the conventional chemotherapy approaches, even the most newly developed, i.e., molecularly targeted therapy and immunotherapy, exhibit a similar frequency and severity of toxicities that range from subclinical ventricular dysfunction to severe cardiomyopathy and, ultimately, congestive heart failure. Specific mechanisms leading to cardiotoxicity still remain to be elucidated. For instance, oxidative stress and DNA damage are considered key players in mediating cardiotoxicity in different treatments. microRNAs (miRNAs) act as key regulators in cell proliferation, cell death, apoptosis, and cell differentiation. Their dysregulation has been associated with adverse cardiac remodeling and toxicity. This review provides an overview of the cardiotoxicity induced by different oncologic treatments and potential miRNAs involved in this effect that could be used as possible therapeutic targets.

6.
Cancer Res ; 80(11): 2340-2354, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32094301

RESUMO

Multiple myeloma, the second most common hematologic malignancy, frequently relapses because of chemotherapeutic resistance. Fibroblast growth factors (FGF) act as proangiogenic and mitogenic cytokines in multiple myeloma. Here, we demonstrate that the autocrine FGF/FGFR axis is essential for multiple myeloma cell survival and progression by protecting multiple myeloma cells from oxidative stress-induced apoptosis. In keeping with the hypothesis that the intracellular redox status can be a target for cancer therapy, FGF/FGFR blockade by FGF trapping or tyrosine kinase inhibitor impaired the growth and dissemination of multiple myeloma cells by inducing mitochondrial oxidative stress, DNA damage, and apoptotic cell death that were prevented by the antioxidant vitamin E or mitochondrial catalase overexpression. In addition, mitochondrial oxidative stress occurred as a consequence of proteasomal degradation of the c-Myc oncoprotein that led to glutathione depletion. Accordingly, expression of a proteasome-nondegradable c-Myc protein mutant was sufficient to avoid glutathione depletion and rescue the proapoptotic effects due to FGF blockade. These findings were confirmed on bortezomib-resistant multiple myeloma cells as well as on bone marrow-derived primary multiple myeloma cells from newly diagnosed and relapsed/refractory patients, including plasma cells bearing the t(4;14) translocation obtained from patients with high-risk multiple myeloma. Altogether, these findings dissect the mechanism by which the FGF/FGFR system plays a nonredundant role in multiple myeloma cell survival and disease progression, and indicate that FGF targeting may represent a therapeutic approach for patients with multiple myeloma with poor prognosis and advanced disease stage. SIGNIFICANCE: This study provides new insights into the mechanisms by which FGF antagonists promote multiple myeloma cell death. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/11/2340/F1.large.jpg.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Mitocôndrias/metabolismo , Mieloma Múltiplo/metabolismo , Estresse Oxidativo/fisiologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Linhagem Celular Tumoral , Colesterol/análogos & derivados , Colesterol/farmacologia , Feminino , Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Distribuição Aleatória , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
7.
Front Oncol ; 8: 472, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30443492

RESUMO

Fibrosarcomas are soft tissue mesenchymal tumors originating from transformed fibroblasts. Fibroblast growth factor-2 (FGF2) and its tyrosine-kinase receptors (FGFRs) play pivotal roles in fibrosarcoma onset and progression, FGF2 being actively produced by fibroblasts in all stages along their malignant transformation to the fibrosarcoma stage. The soluble pattern recognition receptor long pentraxin-3 (PTX3) is an extrinsic oncosuppressor whose expression is reduced in different tumor types, including soft tissue sarcomas, via hypermethylation of its gene promoter. PTX3 interacts with FGF2 and other FGF family members, thus acting as a multi-FGF antagonist able to inhibit FGF-dependent neovascularization and tumor growth. Here, PTX3 overexpression significantly reduced the proliferative and tumorigenic potential of fibrosarcoma cells in vitro and in vivo. In addition, systemic delivery of human PTX3 driven by the Tie2 promoter inhibited the growth of fibrosarcoma grafts in transgenic mice. In a translational perspective, the PTX3-derived small molecule FGF trap NSC12 prevented activation of the FGF/FGFR system in fibrosarcoma cells and reduced their tumorigenic activity in vivo. In conclusion, impairment of the FGF/FGFR system by FGF trap molecules may represent a novel therapeutic approach for the treatment of fibrosarcoma.

8.
Front Immunol ; 9: 2327, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30349543

RESUMO

Angiogenesis, the process of new blood vessel formation from pre-existing ones, plays a key role in various physiological and pathological conditions. Alteration of the angiogenic balance, consequent to the deranged production of angiogenic growth factors and/or natural angiogenic inhibitors, is responsible for angiogenesis-dependent diseases, including cancer. Fibroblast growth factor-2 (FGF2) represents the prototypic member of the FGF family, able to induce a complex "angiogenic phenotype" in endothelial cells in vitro and a potent neovascular response in vivo as the consequence of a tight cross talk between pro-inflammatory and angiogenic signals. The soluble pattern recognition receptor long pentraxin-3 (PTX3) is a member of the pentraxin family produced locally in response to inflammatory stimuli. Besides binding features related to its role in innate immunity, PTX3 interacts with FGF2 and other members of the FGF family via its N-terminal extension, thus inhibiting FGF-mediated angiogenic responses in vitro and in vivo. Accordingly, PTX3 inhibits the growth and vascularization of FGF-dependent tumors and FGF2-mediated smooth muscle cell proliferation and artery restenosis. Recently, the characterization of the molecular bases of FGF2/PTX3 interaction has allowed the identification of NSC12, the first low molecular weight pan-FGF trap able to inhibit FGF-dependent tumor growth and neovascularization. The aim of this review is to provide an overview of the impact of PTX3 and PTX3-derived molecules on the angiogenic, inflammatory, and tumorigenic activity of FGF2 and their potential implications for the development of more efficacious anti-FGF therapeutic agents to be used in those clinical settings in which FGFs play a pathogenic role.


Assuntos
Proteína C-Reativa/fisiologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Componente Amiloide P Sérico/fisiologia , Animais , Humanos , Inflamação , Neovascularização Fisiológica
9.
J Cell Physiol ; 232(7): 1835-1844, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27925196

RESUMO

Sirtuins are conserved NAD+ -dependent deacylases. SIRT1 is a nuclear and cytoplasmic sirtuin involved in the control of histones a transcription factors function. SIRT3 is a mitochondrial protein, which regulates mitochondrial function. Although, both SIRT1 and SIRT3 have been implicated in resistance to cellular stress, the link between these two sirtuins has not been studied so far. Here we aimed to unravel: i) the role of SIRT1-SIRT3 axis for cellular response to oxidative stress and DNA damage; ii) how mammalian cells modulate such SIRT1-SIRT3 axis and which mechanisms are involved. Therefore, we analyzed the response to different stress stimuli in WT or SIRT1-silenced cell lines. Our results demonstrate that SIRT1-silenced cells are more resistant to H2 O2 and etoposide treatment showing decreased ROS accumulation, γ-H2AX phosphorylation, caspase-3 activation and PARP cleavage. Interestingly, we observed that SIRT1-silenced cells show an increased SIRT3 expression. To explore such a connection, we carried out luciferase assays on SIRT3 promoter demonstrating that SIRT1-silencing increases SIRT3 promoter activity and that such an effect depends on the presence of SP1 and ZF5 recognition sequences on SIRT3 promoter. Afterwards, we performed co-immunoprecipitation assays demonstrating that SIRT1 binds and deacetylates the transcription inhibitor ZF5 and that there is a decreased interaction between SP1 and ZF5 in SIRT1-silenced cells. Therefore, we speculate that acetylated ZF5 cannot bind and sequester SP1 that is free, then, to increase SIRT3 transcription. In conclusion, we demonstrate that cells with low SIRT1 levels can maintain their resistance and survival by increasing SIRT3 expression. J. Cell. Physiol. 232: 1835-1844, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Etoposídeo/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/metabolismo , Sirtuína 3/metabolismo , Acetilação/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Citoproteção/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Espaço Intracelular/metabolismo , Camundongos , Modelos Biológicos , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição Sp1/metabolismo
10.
J Mol Med (Berl) ; 93(7): 735-48, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25943780

RESUMO

The epithelial to mesenchymal transition (EMT) is a biological process that drives the formation of cells involved both in tissue repair and in pathological conditions, including tissue fibrosis and tumor metastasis by providing cancer cells with stem cell properties. Recent findings suggest that EMT is reactivated in the heart following ischemic injury. Specifically, epicardial EMT might be involved in the formation of cardiac progenitor cells (CPCs) that can differentiate into endothelial cells, smooth muscle cells, and, possibly, cardiomyocytes. The identification of mechanisms and signaling pathways governing EMT-derived CPC generation and differentiation may contribute to the development of a more efficient regenerative approach for adult heart repair. Here, we summarize key literature in the field.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Células-Tronco Mesenquimais/citologia , Isquemia Miocárdica/patologia , Miocárdio/citologia , Pericárdio/citologia , Diferenciação Celular , Humanos , Miócitos Cardíacos/citologia , Transdução de Sinais
11.
Front Biosci (Elite Ed) ; 5(1): 119-29, 2013 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-23276975

RESUMO

Several pathological conditions, including hypertension, atherosclerosis, diabetes, ischemia/reperfusion injury and nicotine-induced vasculopathy, are associated with vascular endothelial dysfunction characterized by altered secretory output of endothelial cells. Therefore there is a search for molecules and interventions that could restore endothelial function, in particular augmenting NO production, reducing the generation of free radicals and vasoconstrictors and preventing undesired inflammation. The pineal hormone melatonin exhibits several endothelium protective properties: it scavenges free radicals, activates antioxidant defence enzymes, normalizes lipid and blood pressure profile and increases NO bioavailability. Melatonin improved vascular function in experimental hypertension, reducing intimal infiltration and restoring NO production. Melatonin improved the NO pathway also in animal models for the study of diabetes and prevented NO down-regulation and adhesive molecules up-regulation in nicotine-induced vasculopathy. The protection against endothelial damage, vasoconstriction, platelet aggregation and leukocyte infiltration might contribute to the beneficial effects against ischemia-reperfusion injury by melatonin. Therefore, melatonin administration has endothelium-protective potential in several pathological conditions. Nevertheless, it still needs to be established, whether melatonin is able to revert already established endothelial dysfunction in these conditions.


Assuntos
Aterosclerose/fisiopatologia , Diabetes Mellitus/fisiopatologia , Células Endoteliais/metabolismo , Hipertensão/metabolismo , Melatonina/metabolismo , Traumatismo por Reperfusão/metabolismo , Doenças Vasculares/fisiopatologia , Aterosclerose/metabolismo , Diabetes Mellitus/metabolismo , Humanos , Nicotina/toxicidade , Doenças Vasculares/induzido quimicamente
12.
J Cell Biochem ; 113(6): 1926-35, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22234917

RESUMO

Patho-physiological conditions with high oxidative stress, such as conditions associated with increased denatured heme-proteins, are associated with enhanced adipogenic response. This effect predominantly manifests as adipocyte hypertrophy characterized by dysfunctional, pro-inflammatory adipocytes exhibiting reduced expression of anti-inflammatory hormone, adiponectin. To understand how increased levels of cellular heme, a pro-oxidant molecule, modulates adipogenesis; the following study was designed to evaluate effects of heme on adipogenesis in human mesenchymal stem cells (hMSCs) and mouse pre-adipocytes (3T3L1). Experiments were conducted in the absence and in the presence of a superoxide dismutase (SOD) mimetic (tempol, 100 µM). Heme (10 µM) increased (P<0.05) adipogenesis in hMSCs and mouse pre-adipocytes, where tempol alone (100 µmol/L) attenuated adipogenesis in these cells (P<0.05). Tempol also reversed heme-induced increase in adipogenesis in both hMSCs and mouse pre-adipocytes (P<0.05). In addition, heme exposed 3T3L1 exhibited reduced (P<0.05) expression of transcriptional regulator-sirtuin 1 (Sirt1), along with, increased (P<0.05) expression of adipogenic markers peroxisome proliferators-activated receptor-gamma (PPARγ), C/EBPα, and aP2. These effects of heme were rescued (P<0.05) in cells concurrently treated with heme and tempol (P<0.05) and prevented in cells over-expressing Sirt1. Taken together, our results indicate that heme-induced oxidative stress inhibits Sirt1, thus un-inhibiting adipogenic regulators such as PPARγ and C/EBPα; which in turn induce increased adipogenesis along with adipocyte hypertrophy in pre-adipocytes. Anti-oxidant induced offsetting of these effects of heme supports the role of heme-dependent oxidative stress in mediating such events.


Assuntos
Adipócitos/fisiologia , Adipogenia , Heme/metabolismo , Heme/farmacologia , Células-Tronco Mesenquimais/fisiologia , Estresse Oxidativo , Sirtuína 1/biossíntese , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Adiponectina/biossíntese , Animais , Antioxidantes/farmacologia , Proteína alfa Estimuladora de Ligação a CCAAT/biossíntese , Linhagem Celular , Óxidos N-Cíclicos/farmacologia , Proteínas de Ligação a Ácido Graxo/biossíntese , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , PPAR gama/biossíntese , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Marcadores de Spin
13.
Cells Tissues Organs ; 195(3): 252-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21494021

RESUMO

We analyzed the morphological changes in rat aortas during nicotine administration in order to investigate the involvement of vascular smooth muscle cells (VSMCs) in the regulation of vascular wall homeostasis. We also considered the possibility of restoring VSMC changes using melatonin as an antioxidant. We studied 4 groups of animals over 56 days. Three groups of rats were used as controls (the first without treatment, the second with melatonin alone and the third with nicotine alone). The last group of rats was orally treated with nicotine for the first 28 days and with melatonin for the last 28 days. Morphological changes in vessels were evaluated by histological procedures and immunohistochemical analysis using thrombospondin-1 (TSP-1), transforming growth factor-ß1 (TGF-ß1), plasminogen activator inhibitor-1 (PAI-1) and CD31 antibodies. We demonstrated that TSP-1, TGF-ß1 and PAI-1 increased after nicotine administration. We believe that TSP-1 is responsible for neointima formation and that it is able to influence TGF-ß1 and PAI-1 expression. Histological and immunohistochemical analysis by CD31 antibody showed that only a few endothelial cells were present in the aorta after nicotine administration compared to controls and rats treated with melatonin after nicotine administration. Moreover, histological analysis showed that neointima formation was present after nicotine treatment. Furthermore, melatonin inhibited neointima formation increasing TSP-1 expression. The ability of melatonin to inhibit neointima formation suggests that it could be a useful treatment for homeostasis of vascular walls.


Assuntos
Melatonina/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Nicotina/farmacologia , Animais , Aorta/citologia , Aorta/efeitos dos fármacos , Aorta/metabolismo , Células Cultivadas , Imuno-Histoquímica , Masculino , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Ratos , Ratos Wistar
14.
Life Sci ; 87(17-18): 558-64, 2010 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-20854829

RESUMO

AIMS: Smoking is a significant independent risk factor for cardiovascular disease. Among the chemicals present in the cigarette smoke, nicotine is responsible for much of the damage; it induces marked vessel morphological dysfunction and vasoconstriction. Unfortunately, pharmacological or behavioural treatment is not useful against cigarette smoking. The purpose of this study is to test, in experimental conditions, the therapeutic ability of exogenous melatonin administered after smoking-induced vasculopathy and to evaluate the targets of its effects. MAIN METHODS: Nicotine was orally administered for 28 days. Thereafter, the rats were orally treated with melatonin for another 28 days. Vessel damage, an important vasoconstrictor peptide (endothelin-1) and the oxidative stress markers were analysed. KEY FINDINGS: Nicotine treatment induced marked endothelial damage and an obvious vasoconstriction in the aorta as evaluated by an increased endothelin-1 (ET-1) expression. These alterations were correlated with a reduction of endothelial nitric oxide synthase (eNOS) and superoxide dismutase (SOD) and with increases of heat shock protein (Hsp70) and inducible nitric oxide synthase (iNOS) activities. Melatonin not only improved the impairment of endothelial-dependent relaxation, but also induced the increase of eNOS and SOD and the reduction of iNOS and Hsp70. SIGNIFICANCE: The findings indicate that nicotine is associated with an elevated synthesis of the vasoconstrictor peptide (ET-1); it also induces a reduction of nitric oxide-mediated vasodilatation (eNOS) and promotes oxidative stress in the vessel wall. We propose that melatonin should be considered as a therapeutic intervention for smokers since it reduces vasoconstriction and oxidative stress and improves endothelial physiology.


Assuntos
Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Endotelina-1/biossíntese , Melatonina/uso terapêutico , Nicotina/toxicidade , Fumar/metabolismo , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/fisiopatologia , Biomarcadores/metabolismo , Doenças Cardiovasculares/fisiopatologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Proteínas de Choque Térmico HSP70/biossíntese , Masculino , Melatonina/farmacologia , Óxido Nítrico Sintase Tipo II/biossíntese , Óxido Nítrico Sintase Tipo III/biossíntese , Distribuição Aleatória , Ratos , Ratos Wistar , Fumar/efeitos adversos , Regulação para Cima/fisiologia , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/fisiologia , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia
15.
Front Biosci (Schol Ed) ; 2(2): 591-615, 2010 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-20036971

RESUMO

Biomarkers are "biological parameters that can be objectively measured and evaluated, which act as indicators of normal or pathogenic processes, or of the pharmacological response to a therapeutic intervention". Renal failure can be broadly divided in acute and chronic renal diseases, two classes of renal pathology that are well distinct each other, not only on the basis of duration and reversibility of loss of kidney function, but also because of their different aetiopathological processes and their different histopathological characteristics. Unlikely, the conventional measures used for monitoring kidney function are not ideal in the diagnosis of neither acute or chronic kidney diseases and has impaired our ability to institute potentially effective therapies.Therefore, researchers are seeking new early, predictive, non-invasive biomarkers that can aid in the diagnosis for both acute and chronic diseases.These biomarkers will be useful for assessing the duration and severity of kidney disease, and for predicting progression and adverse clinical outcomes.This review article summarized our current understanding of the acute and chronic renal diseases and discussed the most promising biomarkers for facilitating early detection and predicting clinical outcomes.


Assuntos
Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/metabolismo , Biomarcadores/metabolismo , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/metabolismo , Injúria Renal Aguda/classificação , Injúria Renal Aguda/epidemiologia , Injúria Renal Aguda/patologia , Proteínas de Fase Aguda/metabolismo , Cistatina C/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Receptor Celular 1 do Vírus da Hepatite A , Humanos , Interleucina-18/metabolismo , Lipocalina-2 , Lipocalinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Virais/metabolismo , Insuficiência Renal Crônica/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA