Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Melanoma Res ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38950202

RESUMO

Melanoma is the most serious and deadly form of skin cancer and with progression to advanced melanoma, the intrinsically disordered protein α-synuclein is upregulated to high levels. While toxic to dopaminergic neurons in Parkinson's disease, α-synuclein is highly beneficial for primary and metastatic melanoma cells. To gain detailed insights into this exact opposite role of α-synuclein in advanced melanoma, we performed proteomic studies of high-level α-synuclein-expressing human melanoma cell lines that were treated with the diphenyl-pyrazole small-molecule compound anle138b, which binds to and interferes with the oligomeric structure of α-synuclein. We also performed proteomic and transcriptomic studies of human melanoma xenografts that were treated systemically with the anle138b compound. The results reveal that interfering with oligomerized α-synuclein in the melanoma cells in these tumor xenografts led to a substantial upregulation and expression of major histocompatibility complex proteins, which are pertinent to enhancing anti-melanoma immune responses.

2.
Chemphyschem ; 24(2): e202200615, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36106366

RESUMO

The metabolism of malignant cells differs significantly from that of healthy cells and thus, it is possible to perform metabolic imaging to reveal not only the exact location of a tumor, but also intratumoral areas of high metabolic activity. Herein, we demonstrate the feasibility of metabolic tumor imaging using signal-enhanced 1-13 C-pyruvate-d3 , which is rapidly enhanced via para-hydrogen, and thus, the signal is amplified by several orders of magnitudes in less than a minute. Using as a model, human melanoma xenografts injected with signal-enhanced 1-13 C-pyruvate-d3, we show that the conversion of pyruvate into lactate can be monitored along with its kinetics, which could pave the way for rapidly detecting and monitoring changes in tumor metabolism.


Assuntos
Neoplasias , Ácido Pirúvico , Humanos , Ácido Pirúvico/metabolismo , Hidrogênio , Imageamento por Ressonância Magnética/métodos , Isótopos de Carbono
3.
Cell Death Dis ; 10(12): 898, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31776327

RESUMO

A major hallmark of Parkinson's disease is loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The pathophysiological mechanisms causing this relatively selective neurodegeneration are poorly understood, and thus experimental systems allowing to study dopaminergic neuron dysfunction are needed. Induced pluripotent stem cells (iPSCs) differentiated toward a dopaminergic neuronal phenotype offer a valuable source to generate human dopaminergic neurons. However, currently available protocols result in a highly variable yield of dopaminergic neurons depending on the source of hiPSCs. We have now developed a protocol based on HBA promoter-driven transient expression of transcription factors by means of adeno-associated viral (AAV) vectors, that allowed to generate very consistent numbers of dopaminergic neurons from four different human iPSC lines. We also demonstrate that AAV vectors expressing reporter genes from a neuron-specific hSyn1 promoter can serve as surrogate markers for maturation of hiPSC-derived dopaminergic neurons. Dopaminergic neurons differentiated by transcription factor expression showed aggravated neurodegeneration through α-synuclein overexpression, but were not sensitive to γ-synuclein overexpression, suggesting that these neurons are well suited to study neurodegeneration in the context of Parkinson's disease.


Assuntos
Diferenciação Celular , Neurônios Dopaminérgicos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Fatores de Transcrição/metabolismo , Adulto , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Dependovirus/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Feminino , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Ratos , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/toxicidade
4.
J Biol Chem ; 286(5): 3970-80, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-20980264

RESUMO

Macroautophagy, a homeostatic process that shuttles cytoplasmic constituents into endosomal and lysosomal compartments, has recently been shown to deliver antigens for presentation on major histocompatibility complex (MHC) class II molecules. Skeletal muscle fibers show a high level of constitutive macroautophagy and express MHC class II molecules upon immune activation. We found that tumor necrosis factor-α (TNF-α), a monokine overexpressed in inflammatory myopathies, led to a marked up-regulation of macroautophagy in skeletal myocytes. Furthermore, TNF-α augmented surface expression of MHC class II molecules in interferon-γ (IFN-γ)-treated myoblasts. The synergistic effect of TNF-α and IFN-γ on the induction of MHC class II surface expression was not reflected by higher intracellular human leukocyte antigen (HLA)-DR levels and was reversed by macroautophagy inhibition, suggesting that TNF-α facilitates antigen processing via macroautophagy for more efficient MHC class II loading. Muscle biopsies from patients with sporadic inclusion body myositis, a well defined myopathy with chronic inflammation, showed that over 20% of fibers that contained autophagosomes costained for MHC class II molecules and that more than 40% of double-positive muscle fibers had contact with CD4(+) and CD8(+) immune cells. These findings establish a mechanism through which TNF-α regulates both macroautophagy and MHC class II expression and suggest that macroautophagy-mediated antigen presentation contributes to the immunological environment of the inflamed human skeletal muscle.


Assuntos
Autofagia/efeitos dos fármacos , Antígenos de Histocompatibilidade Classe II/genética , Células Musculares/imunologia , Músculo Esquelético/patologia , Fator de Necrose Tumoral alfa/farmacologia , Apresentação de Antígeno , Regulação da Expressão Gênica , Humanos , Imunidade , Inflamação , Interferon gama/farmacologia , Músculo Esquelético/citologia , Doenças Musculares/patologia , Miosite/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA