Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 1012688, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340405

RESUMO

The fungus Fusarium oxysporum is infamous for its devastating effects on economically important crops worldwide. F. oxysporum isolates are grouped into formae speciales based on their ability to cause disease on different hosts. Assigning F. oxysporum strains to formae speciales using non-experimental procedures has proven to be challenging due to their genetic heterogeneity and polyphyletic nature. However, genetically diverse isolates of the same forma specialis encode similar repertoires of effectors, proteins that are secreted by the fungus and contribute to the establishment of compatibility with the host. Based on this observation, we previously designed the F. oxysporum Effector Clustering (FoEC) pipeline which is able to classify F. oxysporum strains by forma specialis based on hierarchical clustering of the presence of predicted putative effector sequences, solely using genome assemblies as input. Here we present the updated FoEC2 pipeline which is more user friendly, customizable and, due to multithreading, has improved scalability. It is designed as a Snakemake pipeline and incorporates a new interactive visualization app. We showcase FoEC2 by clustering 537 publicly available F. oxysporum genomes and further analysis of putative effector families as multiple sequence alignments. We confirm classification of isolates into formae speciales and are able to further identify their subtypes. The pipeline is available on github: https://github.com/pvdam3/FoEC2.

2.
Viruses ; 13(11)2021 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-34834996

RESUMO

The tripartite genome of the negative-stranded RNA virus Tomato spotted wilt orthotospovirus (TSWV) is assembled, together with two viral proteins, the nucleocapsid protein and the RNA-dependent RNA polymerase, into infectious ribonucleoprotein complexes (RNPs). These two viral proteins are, together, essential for viral replication and transcription, yet our knowledge on the host factors supporting these two processes remains limited. To fill this knowledge gap, the protein composition of viral RNPs collected from TSWV-infected Nicotiana benthamiana plants, and of those collected from a reconstituted TSWV replicon system in the yeast Saccharomyces cerevisiae, was analysed. RNPs obtained from infected plant material were enriched for plant proteins implicated in (i) sugar and phosphate transport and (ii) responses to cellular stress. In contrast, the yeast-derived viral RNPs primarily contained proteins implicated in RNA processing and ribosome biogenesis. The latter suggests that, in yeast, the translational machinery is recruited to these viral RNPs. To examine whether one of these cellular proteins is important for a TSWV infection, the corresponding N. benthamiana genes were targeted for virus-induced gene silencing, and these plants were subsequently challenged with TSWV. This approach revealed four host factors that are important for systemic spread of TSWV and disease symptom development.


Assuntos
Nicotiana/virologia , Fator 1 de Elongação de Peptídeos/metabolismo , Isoformas de Proteínas/metabolismo , Tospovirus/fisiologia , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/fisiologia , Solanum lycopersicum , Proteínas do Nucleocapsídeo , Fator 1 de Elongação de Peptídeos/genética , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/genética , Replicon , Ribonucleoproteínas/metabolismo , Tospovirus/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
3.
Environ Microbiol ; 18(11): 4087-4102, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27387256

RESUMO

Formae speciales (ff.spp.) of the fungus Fusarium oxysporum are often polyphyletic within the species complex, making it impossible to identify them on the basis of conserved genes. However, sequences that determine host-specific pathogenicity may be expected to be similar between strains within the same forma specialis. Whole genome sequencing was performed on strains from five different ff.spp. (cucumerinum, niveum, melonis, radicis-cucumerinum and lycopersici). In each genome, genes for putative effectors were identified based on small size, secretion signal, and vicinity to a "miniature impala" transposable element. The candidate effector genes of all genomes were collected and the presence/absence patterns in each individual genome were clustered. Members of the same forma specialis turned out to group together, with cucurbit-infecting strains forming a supercluster separate from other ff.spp. Moreover, strains from different clonal lineages within the same forma specialis harbour identical effector gene sequences, supporting horizontal transfer of genetic material. These data offer new insight into the genetic basis of host specificity in the F. oxysporum species complex and show that (putative) effectors can be used to predict host specificity in F. oxysporum.


Assuntos
Fusarium/isolamento & purificação , Fusarium/fisiologia , Doenças das Plantas/microbiologia , Plantas/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/classificação , Fusarium/genética , Especificidade de Hospedeiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA