RESUMO
Head and neck squamous cell carcinomas (HNSCC) are associated with poor morbidity and mortality. Current treatment strategies are highly toxic and do not benefit over 50% of patients. There is therefore a crucial need for predictive and/or prognostic biomarkers to allow treatment stratification for individual patients. One class of biomarkers that has recently gained importance are microRNA (miRNA). MiRNA are small, noncoding molecules which regulate gene expression post-transcriptionally. We performed miRNA expression profiling of a cohort of head and neck tumours with known clinical outcomes. The results showed miR-9 to be significantly downregulated in patients with poor treatment outcome, indicating its role as a potential biomarker in HNSCC. Overexpression of miR-9 in HNSCC cell lines significantly decreased cellular proliferation and inhibited colony formation in soft agar. Conversely, miR-9 knockdown significantly increased both these features. Importantly, endogenous CXCR4 expression levels, a known target of miR-9, inversely correlated with miR-9 expression in a panel of HNSCC cell lines tested. Induced overexpression of CXCR4 in low expressing cells increased proliferation, colony formation and cell cycle progression. Moreover, CXCR4-specific ligand, CXCL12, enhanced cellular proliferation, migration, colony formation and invasion in CXCR4-overexpressing and similarly in miR-9 knockdown cells. CXCR4-specific inhibitor plerixafor abrogated the oncogenic phenotype of CXCR4 overexpression as well as miR-9 knockdown. Our data demonstrate a clear role for miR-9 as a tumour suppressor microRNA in HNSCC, and its role seems to be mediated through CXCR4 suppression. MiR-9 knockdown, similar to CXCR4 overexpression, significantly promoted aggressive HNSCC tumour cell characteristics. Our results suggest CXCR4-specific inhibitor plerixafor as a potential therapeutic agent, and miR-9 as a possible predictive biomarker of treatment response in HNSCC.
Assuntos
Antineoplásicos/farmacologia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Compostos Heterocíclicos/farmacologia , MicroRNAs/genética , Receptores CXCR4/genética , Benzilaminas , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclamos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/diagnóstico , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Invasividade Neoplásica/diagnóstico , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Invasividade Neoplásica/prevenção & controle , Prognóstico , Receptores CXCR4/antagonistas & inibidores , Resultado do TratamentoRESUMO
B-cell receptor activation, occurring within lymph nodes, plays a key role in the pathogenesis of chronic lymphocytic leukemia and is linked to prognosis. As well as activation of downstream signaling, receptor ligation triggers internalization, transit to acidified endosomes and degradation of ligand-receptor complexes. Herein, we investigated the relationship between these two processes in normal and leukemic B cells. We found that leukemic B cells, particularly anergic cases lacking the capacity to initiate downstream signaling, internalize and accumulate ligand in acidified endosomes more efficiently than normal B cells. Furthermore, ligation of either surface CD79B, a B-cell receptor component required for downstream signaling, or surface Immunoglobulin M (IgM) by cognate agonistic antibody, showed that the two molecules internalize independently of each other in leukemic but not normal B cells. Since association with surface CD79B is required for surface retention of IgM, this suggests that uncoupling of B-cell receptor internalization from signaling may be due to the dissociation of these two molecules in leukemic cells. A comparison of lymph node with peripheral blood cells from chronic lymphocytic leukemia patients showed that, despite recent B-cell receptor activation, lymph node B cells expressed higher levels of surface IgM. This surprising finding suggests that the B-cell receptors of lymph node- and peripheral blood-derived leukemic cells might be functionally distinct. Finally, long-term therapy with the Bruton's tyrosine kinase inhibitors ibrutinib or acalabrutinib resulted in a switch to an anergic pattern of B-cell receptor function with reduced signaling capacity, surface IgM expression and more efficient internalization.
Assuntos
Leucemia Linfocítica Crônica de Células B/patologia , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais , Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Benzamidas/uso terapêutico , Antígenos CD79/metabolismo , Anergia Clonal , Endocitose , Humanos , Imunoglobulina M/metabolismo , Piperidinas , Pirazinas/uso terapêutico , Pirazóis/uso terapêutico , Pirimidinas/uso terapêuticoRESUMO
Analysis of short tandem repeats (STR) is the predominant method for post-transplant monitoring of donor engraftment. It can enable early detection of disease relapse, level of engraftment and provide useful information on the graft-versus-host disease (GVHD)/graft-versus-tumour (GVT) effect, facilitating therapeutic intervention. Harmonization and standardization of techniques and result interpretation is essential to reduce the impact of laboratory variability on both clinical management and the results of multi-centre clinical trials. However, the United Kingdom National External Quality Assessment Service for Leucocyte Immunophenotyping (UK NEQAS LI) has highlighted significant issues inherent in STR testing that impact upon inter- and intra- laboratory variation. We present here consensus best practice guidelines and recommendations for STR chimerism testing, data interpretation and reporting that have been drawn up and agreed by a consortium of 11 UK and Eire clinical laboratories. This document uses data obtained from the UK NEQAS LI Post-Stem Cell Transplant (SCT) Chimerism Monitoring Programme.
Assuntos
Quimerismo , Transplante de Células-Tronco Hematopoéticas , Quimeras de Transplante , Testes Genéticos/métodos , Testes Genéticos/normas , Humanos , Repetições de Microssatélites , Quimeras de Transplante/genética , Transplante Homólogo , Conduta ExpectanteRESUMO
Chronic lymphocytic leukemia (CLL) cells rapidly undergo apoptosis in vitro, suggesting that the in vivo microenvironment provides crucial antiapoptotic signals. Overexpression of the antiapoptotic proteins Bcl-2 and Mcl-1 is a hallmark of CLL, and their expression is further enhanced in the lymphoid tissues. However, the high levels of Mcl-1 found in peripheral blood samples, coupled with its short half-life, led us to hypothesize that it must be actively maintained in the peripheral circulation. Coculture of CLL cells with human vascular endothelial cells significantly enhanced tumor cell survival, an effect that was not observed with normal B cells. This was associated with elevated levels of the antiapoptotic proteins Bcl-2, Mcl-1, and Bcl-X(L) and marked increased expression of CD38 and CD49d, both of which are associated with clinically aggressive disease. Because CD38, CD49d, and some Bcl-2 family genes are transcriptional targets for NF-κB, we assessed NF-κB activation following coculture with endothelial cells. DNA binding of the NF-κB subunit Rel A was significantly increased and strongly correlated with changes in transcription of CD38, CD49d, BCL2, MCL1, and BCLXL, effects that were reversed by a peptide inhibitor of Rel A. These effects were not observed following coculture with nonendothelial cell lines. Therefore, CLL cells receive specific survival signals following interaction with endothelial cells mediated through the activation of NF-κB and the induction of downstream target genes. This type of interaction in the peripheral vasculature may explain the constitutive NF-κB activation and the overexpression of Bcl-2 family proteins commonly seen in this disease.