Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1185: 338872, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34711307

RESUMO

White blood cells protect the body against disease but may also cause chronic inflammation, auto-immune diseases or leukemia. There are many different white blood cell types whose identity and function can be studied by measuring their protein expression. Therefore, high-throughput analytical instruments were developed to measure multiple proteins on millions of single cells. The information-rich biochemistry information may only be fully extracted using multivariate statistics. Here we show an overview of the most essential steps for multivariate data analysis of single cell data. We used white blood cells (immunology) as a case study, but a similar approach may be used in environment or biotech research. The first step is analyzing the study design and subsequently formulating a research question. The three main designs are immunophenotyping (finding different cell types), cell activation and rare cell discovery. When preparing the data it is essential to consider the design and focus on the cell type of interest by removing all unwanted events. After pre-processing, the ten-thousands to millions of single cells per sample need to be converted into a cellular distribution. For immunophenotyping a clustering method such as Self-Organizing Maps is useful and for cell activation a model that describes the covariance such as Principal Component Analysis is useful. In rare cell discovery it is useful to first model all common cells and remove them to find the rare cells. Finally discriminant analysis based on the cellular distribution may highlight which cell (sub)types are different between groups.


Assuntos
Análise de Dados , Proteômica , Análise por Conglomerados , Análise Multivariada , Proteínas
2.
Sci Rep ; 7(1): 5471, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28710472

RESUMO

Multicolour Flow Cytometry (MFC) produces multidimensional analytical data on the quantitative expression of multiple markers on single cells. This data contains invaluable biomedical information on (1) the marker expressions per cell, (2) the variation in such expression across cells, (3) the variability of cell marker expression across samples that (4) may vary systematically between cells collected from donors and patients. Current conventional and even advanced data analysis methods for MFC data explore only a subset of these levels. The Discriminant Analysis of MultiAspect CYtometry (DAMACY) we present here provides a comprehensive view on health and disease responses by integrating all four levels. We validate DAMACY by using three distinct datasets: in vivo response of neutrophils evoked by systemic endotoxin challenge, the clonal response of leukocytes in bone marrow of acute myeloid leukaemia (AML) patients, and the complex immune response in blood of asthmatics. DAMACY provided good accuracy 91-100% in the discrimination between health and disease, on par with literature values. Additionally, the method provides figures that give insight into the marker expression and cell variability for more in-depth interpretation, that can benefit both physicians and biomedical researchers to better diagnose and monitor diseases that are reflected by changes in blood leukocytes.


Assuntos
Biomarcadores/análise , Análise de Dados , Citometria de Fluxo/métodos , Análise de Célula Única , Adulto , Idoso , Asma/patologia , Cor , Análise Discriminante , Humanos , Leucemia Mieloide Aguda/patologia , Lipopolissacarídeos/farmacologia , Pessoa de Meia-Idade , Modelos Biológicos , Fenótipo , Adulto Jovem
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 143: 298-303, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25748285

RESUMO

We have investigated the effect of thermal treatment on the discrimination of pure extra virgin olive oil (EVOO) samples from EVOO samples adulterated with sunflower oil. Two groups of samples were used. One group was analyzed at room temperature (25°C) and the other group was thermally treated in a thermostatic water bath at 75°C for 8h, in contact with air and with light exposure, to favor oxidation. All samples were then measured with synchronous fluorescence spectroscopy. Fluorescence spectra were acquired by varying the excitation wavelength in the region from 250 to 720nm. In order to optimize the differences between excitation and emission wavelengths, four constant differential wavelengths, i.e., 20nm, 40nm, 60nm and 80nm, were tried. Partial least-squares discriminant analysis (PLS-DA) was used to discriminate between pure and adulterated oils. It was found that the 20nm difference was the optimal, at which the discrimination models showed the best results. The best PLS-DA models were those built with the difference spectra (75-25°C), which were able to discriminate pure from adulterated oils at a 2% level of adulteration. Furthermore, PLS regression models were built to quantify the level of adulteration. Again, the best model was the one built with the difference spectra, with a prediction error of 1.75% of adulteration.


Assuntos
Azeite de Oliva/química , Óleos de Plantas/química , Helianthus , Temperatura Alta , Olea , Oxirredução , Espectrometria de Fluorescência , Óleo de Girassol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA