Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Comput Struct Biotechnol J ; 20: 2360-2371, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664230

RESUMO

Increasing resistance to common antibiotics is becoming a major challenge that requires the development of new antibacterial agents. Peptidoglycan is an essential heteropolymer of the bacterial envelope that ensures the integrity and shape of all bacteria and is also an important target for antibiotics. The biosynthesis of peptidoglycan depends on a lipid carrier, undecaprenyl phosphate. As a byproduct of peptidoglycan polymerization, the lipid carrier is released as undecaprenyl pyrophosphate, which must be recycled to allow new polymerization cycles. To this end, it undergoes a dephosphorylation process catalyzed by the membrane phosphatase BacA, which is specific and highly conserved in bacteria. In the present study, we identified small molecules displaying inhibitory potency towards BacA. We began by preparing a commercial compound library, followed by high-throughput virtual screening by ensemble docking using the 3D structure of BacA and molecular dynamics snapshots to account for the flexibility of the protein. Of 83 compounds computationally selected and tested in a biochemical assay, one sulfamoylthiophene molecule showed significant inhibition of the undecaprenyl pyrophosphate dephosphorylation activity catalyzed by BacA. Subsequently, an additional 33 scaffold analogs were selected and acquired, of which 6 compounds exhibited BacA inhibition. The IC50 values of these compounds ranged from 42 to 366 µM. In addition, significant antibacterial activity against Escherichia coli was observed in TolC/PAP2-depleted strains. We believe that the overall strategy followed in this study and the identified class of inhibitors provide a solid foundation for the further development of potent BacA-targeted inhibitors and the discovery of novel antibacterial compounds.

2.
J Immunol ; 208(3): 562-570, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35031578

RESUMO

Aging is associated with functional deficits in the naive T cell compartment, which compromise the generation of de novo immune responses against previously unencountered Ags. The mechanisms that underlie this phenomenon have nonetheless remained unclear. We found that naive CD8+ T cells in elderly humans were prone to apoptosis and proliferated suboptimally in response to stimulation via the TCR. These abnormalities were associated with dysregulated lipid metabolism under homeostatic conditions and enhanced levels of basal activation. Importantly, reversal of the bioenergetic anomalies with lipid-altering drugs, such as rosiglitazone, almost completely restored the Ag responsiveness of naive CD8+ T cells. Interventions that favor lipid catabolism may therefore find utility as adjunctive therapies in the elderly to promote vaccine-induced immunity against targetable cancers and emerging pathogens, such as seasonal influenza viruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).


Assuntos
Envelhecimento/imunologia , Linfócitos T CD8-Positivos/imunologia , Imunocompetência/efeitos dos fármacos , Metabolismo dos Lipídeos , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose , Linfócitos T CD8-Positivos/metabolismo , COVID-19/imunologia , Vacinas Anticâncer/imunologia , Divisão Celular , Feminino , Fenofibrato/farmacologia , Glucose/metabolismo , Antígeno HLA-A2/imunologia , Humanos , Hipolipemiantes/farmacologia , Hipolipemiantes/uso terapêutico , Influenza Humana/imunologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Ativação Linfocitária , Antígeno MART-1/química , Antígeno MART-1/imunologia , Masculino , Pessoa de Meia-Idade , Neoplasias/imunologia , Fragmentos de Peptídeos/imunologia , Rosiglitazona/farmacologia , Método Simples-Cego , Vacinação , Vacinas Virais/imunologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA