RESUMO
DNA variation analysis has become indispensable in many aspects of modern biomedicine, most prominently in the comparison of normal and tumor samples. Thousands of samples are collected in local sequencing efforts and public databases requiring highly scalable, portable, and automated workflows for streamlined processing. Here, we present nf-core/sarek 3, a well-established, comprehensive variant calling and annotation pipeline for germline and somatic samples. It is suitable for any genome with a known reference. We present a full rewrite of the original pipeline showing a significant reduction of storage requirements by using the CRAM format and runtime by increasing intra-sample parallelization. Both are leading to a 70% cost reduction in commercial clouds enabling users to do large-scale and cross-platform data analysis while keeping costs and CO2 emissions low. The code is available at https://nf-co.re/sarek.
RESUMO
Rheumatoid arthritis (RA) is an autoimmune disease characterized by systemic inflammation and is mediated by multiple immune cell types. In this work, we aimed to determine the relevance of changes in cell proportions in peripheral blood mononuclear cells (PBMCs) during the development of disease and following treatment. Samples from healthy blood donors, newly diagnosed RA patients, and established RA patients that had an inadequate response to MTX and were about to start tumor necrosis factor inhibitors (TNFi) treatment were collected before and after 3 months of treatment. We used in parallel a computational deconvolution approach based on RNA expression and flow cytometry to determine the relative cell-type frequencies. Cell-type frequencies from deconvolution of gene expression indicate that monocytes (both classical and non-classical) and CD4+ cells (Th1 and Th2) were increased in RA patients compared to controls, while NK cells and B cells (naïve and mature) were significantly decreased in RA patients. Treatment with MTX caused a decrease in B cells (memory and plasma cell), and a decrease in CD4 Th cells (Th1 and Th17), while treatment with TNFi resulted in a significant increase in the population of B cells. Characterization of the RNA expression patterns found that most of the differentially expressed genes in RA subjects after treatment can be explained by changes in cell frequencies (98% and 74% respectively for MTX and TNFi).
Assuntos
Antirreumáticos , Artrite Reumatoide , Humanos , Antirreumáticos/uso terapêutico , Leucócitos Mononucleares/metabolismo , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Artrite Reumatoide/diagnóstico , Linfócitos T CD4-Positivos/metabolismo , RNARESUMO
BACKGROUND AND AIMS: Genome-wide association studies (GWAS) identified a coronary artery disease (CAD) risk locus on 13.q34 tagged by rs61969072 (T/G). This variant lies in an intergenic region, proximal to ING1, CARKD and CARS2 but its causal relationship to CAD is unknown. METHODS AND RESULTS: We first demonstrated that rs61969072 and tightly linked single nucleotide polymorphisms (SNPs) associate with CARS2 but not ING1 or CARKD expression in carotid endarterectomy samples, with reduced CARS2 abundance in carriers of the CAD risk allele (G). THP-1 monocytes were differentiated and polarized to proinflammatory (M1) and anti-inflammatory (M2) macrophages. CARS2 gene expression decreased in M1 and increased in M2 macrophages, consistent with a role for CARS2 in inflammation. Gene expression profiling revealed an increase in pro-inflammatory markers in response to CARS2 siRNA knockdown in THP-1 derived macrophages, accompanied by an increased abundance of inflammatory cytokines in the cell supernatant. Functional enrichment analysis of impacted transcripts identified the anti-inflammatory IL10 signalling pathway. Western blot analysis of CARS2 silenced macrophages revealed reduced STAT3 phosphorylation in response to IL-10 and increased expression of LPS-induced genes that are repressed by IL-10, indicating a role for CARS2 in anti-inflammatory signalling. Finally, to simulate vessel wall conditions, macrophages, and smooth muscle cells (SMC) were maintained in co-culture. Significantly, CARS2 silencing in macrophages altered the SMC phenotype, decreasing expression of contractile genes and increasing expression of inflammatory genes. CONCLUSIONS: These data highlight a novel anti-inflammatory novel role for CARS2 in human macrophages and SMCs that may underlie the protective effect of a common GWAS-identified variant.
Assuntos
Doença da Artéria Coronariana , Interleucina-10 , Anti-Inflamatórios/farmacologia , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Citocinas/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Interleucina-10/genética , Interleucina-10/metabolismo , Macrófagos/metabolismoRESUMO
OBJECTIVES: Advances in immunotherapy by blocking TNF have remarkably improved treatment outcomes for Rheumatoid arthritis (RA) patients. Although treatment specifically targets TNF, the downstream mechanisms of immune suppression are not completely understood. The aim of this study was to detect biomarkers and expression signatures of treatment response to TNF inhibition. METHODS: Peripheral blood mononuclear cells (PBMCs) from 39 female patients were collected before anti-TNF treatment initiation (day 0) and after 3 months. The study cohort included patients previously treated with MTX who failed to respond adequately. Response to treatment was defined based on the EULAR criteria and classified 23 patients as responders and 16 as non-responders. We investigated differences in gene expression in PBMCs, the proportion of cell types and cell phenotypes in peripheral blood using flow cytometry and the level of proteins in plasma. Finally, we used machine learning models to predict non-response to anti-TNF treatment. RESULTS: The gene expression analysis in baseline samples revealed notably higher expression of the gene EPPK1 in future responders. We detected the suppression of genes and proteins following treatment, including suppressed expression of the T cell inhibitor gene CHI3L1 and its protein YKL-40. The gene expression results were replicated in an independent cohort. Finally, machine learning models mainly based on transcriptomic data showed high predictive utility in classifying non-response to anti-TNF treatment in RA. CONCLUSIONS: Our integrative multi-omics analyses identified new biomarkers for the prediction of response, found pathways influenced by treatment and suggested new predictive models of anti-TNF treatment in RA patients.
Assuntos
Antirreumáticos , Artrite Reumatoide , Antirreumáticos/metabolismo , Antirreumáticos/uso terapêutico , Artrite Reumatoide/diagnóstico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Biomarcadores , Feminino , Humanos , Leucócitos Mononucleares/metabolismo , Aprendizado de Máquina , Metotrexato/metabolismo , Metotrexato/uso terapêutico , Resultado do Tratamento , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismoRESUMO
A promise of genomics in precision medicine is to provide individualized genetic risk predictions. Polygenic risk scores (PRS), computed by aggregating effects from many genomic variants, have been developed as a useful tool in complex disease research. However, the application of PRS as a tool for predicting an individual's disease susceptibility in a clinical setting is challenging because PRS typically provide a relative measure of risk evaluated at the level of a group of people but not at individual level. Here, we introduce a machine-learning technique, Mondrian Cross-Conformal Prediction (MCCP), to estimate the confidence bounds of PRS-to-disease-risk prediction. MCCP can report disease status conditional probability value for each individual and give a prediction at a desired error level. Moreover, with a user-defined prediction error rate, MCCP can estimate the proportion of sample (coverage) with a correct prediction.
Assuntos
Predisposição Genética para Doença/genética , Aprendizado de Máquina , Herança Multifatorial/genética , Fatores Etários , Bancos de Espécimes Biológicos , Neoplasias da Mama/genética , Doença da Artéria Coronariana/genética , Diabetes Mellitus Tipo 2/genética , Feminino , Humanos , Doenças Inflamatórias Intestinais/genética , Masculino , Reprodutibilidade dos Testes , Esquizofrenia/genética , Suécia , Reino UnidoRESUMO
DNA-damaging cancer therapies induce interferon expression and stimulate the immune system, promoting therapy responses. The immune-activating STING (Stimulator of Interferon Genes) pathway is induced when DNA or double-stranded RNA (dsRNA) is detected in the cell cytoplasm, which can be caused by viral infection or by DNA damage following chemo- or radiotherapy. Here, we investigated the responses of cutaneous T-cell lymphoma (CTCL) cells to the clinically applied DNA crosslinking photochemotherapy (combination of 8-methoxypsoralen and UVA light; 8-MOP + UVA). We showed that this treatment evokes interferon expression and that the type III interferon IFNL1 is the major cytokine induced. IFNL1 upregulation is dependent on STING and on the cytoplasmic DNA sensor cyclic GMP-AMP synthase (cGAS). Furthermore, 8-MOP + UVA treatment induced the expression of genes in pathways involved in response to the tumor necrosis factor, innate immune system and acute inflammatory response. Notably, a subset of these genes was under control of the STING-IFNL1 pathway. In conclusion, our data connected DNA damage with immune system activation via the STING pathway and contributed to a better understanding of the effectiveness of photochemotherapy.
Assuntos
Dano ao DNA/fisiologia , Interferons/metabolismo , Fotoquimioterapia/métodos , Linhagem Celular Tumoral , Humanos , Transfecção , Interferon lambdaRESUMO
The Caspase activation and recruitment domain 8 (CARD8) protein is a component of innate immunity and overexpression of CARD8 mRNA was previously identified in atherosclerosis. However, very little is known about the regulation of CARD8 in endothelial cells and atherosclerosis. The aim of this study was to investigate CARD8 in the regulation of cytokine and chemokine expression in endothelial cells. Sections of human atherosclerotic lesions and non-atherosclerotic arteries were immunostained for CARD8 protein. Expression of CARD8 was correlated to mediators of inflammation in atherosclerotic lesions using Biobank of Karolinska Endarterectomies microarray data. The CARD8 mRNA was knocked-down in human umbilical vein endothelial cells (HUVECs) in vitro, followed by quantitative RT-PCR analysis and OLINK Proteomics. Endothelial and smooth muscle cells in arterial tissue expressed CARD8 and CARD8 correlated with vWF, CD163 and the expression of inflammatory genes, such as CXCL1, CXCL6 and PDGF-A in plaque. Knock-down of CARD8 in HUVECs significantly altered proteins involved in inflammatory response, such as CXCL1, CXCL6, PDGF-A, MCP-1 and IL-6. The present study suggest that CARD8 regulate the expression of cytokines and chemokines in endothelial cells and atherosclerotic lesions, suggesting that CARD8 plays a significant role in endothelial activation.
Assuntos
Aterosclerose/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Artérias Carótidas/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Inflamação/metabolismo , Proteínas de Neoplasias/metabolismo , Aterosclerose/cirurgia , Doenças das Artérias Carótidas/metabolismo , Doenças das Artérias Carótidas/cirurgia , Quimiocinas/metabolismo , Citocinas/metabolismo , Endarterectomia das Carótidas , Humanos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/cirurgiaRESUMO
NK cells are innate lymphocytes that play an integral role in tumor rejection and viral clearance. Unlike their other lymphocyte counterparts, NK cells have the unique ability to recognize and lyse target cells without prior exposure. However, there are no known NK cell-specific genes that are exclusively expressed by all NK cells. Therefore, identification of NK cell-specific genes would allow a better understanding of why NK cells are unique cytotoxic lymphocytes. From the Immunological Genome (ImmGen) Consortium studies, we identified kruppel-like factor 12 (Klf12), encoding a novel transcription factor, preferentially expressed in C57BL/6 mouse NK cells. KLF12 was dispensable for NK cell development, IFN-γ production, degranulation, and proliferation in Klf12 knockout mice. RNA-sequencing analysis revealed increased expression of Btg3, an antiproliferative gene, in KLF12-deficient NK cells compared with wild-type NK cells. Interestingly, competitive mixed bone marrow chimeric mice exhibited reduced development of KLF12-deficient NK cells, altered IFN-γ production and degranulation, and impairment of NK cell proliferation in vitro and in vivo in response to mouse CMV infection. KLF12-deficient NK cells from bone marrow chimeric mice also expressed higher levels of the IL-21R, which resulted in increased IL-21R signaling and correlated with greater inhibition of NK cell proliferation. Furthermore, IL-21 induced Btg3 expression, which correlated with arrested NK cell maturation and proliferation. In summary, we found that KLF12 regulates mouse NK cell proliferation potentially by regulating expression of Btg3 via IL-21.
Assuntos
Proliferação de Células/fisiologia , Células Matadoras Naturais/fisiologia , Fatores de Transcrição Kruppel-Like/metabolismo , Animais , Proteínas de Ciclo Celular/biossíntese , Regulação da Expressão Gênica/imunologia , Interleucinas/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
BACKGROUND: Genetic variant landscape of coronary artery disease is dominated by noncoding variants among which many occur within putative enhancers regulating the expression levels of relevant genes. It is crucial to assign the genetic variants to their correct genes both to gain insights into perturbed functions and better assess the risk of disease. METHODS: In this study, we generated high-resolution genomic interaction maps (≈750 bases) in aortic endothelial, smooth muscle cells and THP-1 (human leukemia monocytic cell line) macrophages stimulated with lipopolysaccharide using Hi-C coupled with sequence capture targeting 25 429 features, including variants associated with coronary artery disease. We also sequenced their transcriptomes and mapped putative enhancers using chromatin immunoprecipitation with an antibody against H3K27Ac. RESULTS: The regions interacting with promoters showed strong enrichment for enhancer elements and validated several previously known interactions and enhancers. We detected interactions for 727 risk variants obtained by genome-wide association studies and identified novel, as well as established genes and functions associated with cardiovascular diseases. We were able to assign potential target genes for additional 398 genome-wide association studies variants using haplotype information, thereby identifying additional relevant genes and functions. Importantly, we discovered that a subset of risk variants interact with multiple promoters and their expression levels were strongly correlated. CONCLUSIONS: In summary, we present a catalog of candidate genes regulated by coronary artery disease-related variants and think that it will be an invaluable resource to further the investigation of cardiovascular pathologies and disease.
Assuntos
Doença da Artéria Coronariana/patologia , Redes Reguladoras de Genes , Linhagem Celular , Doença da Artéria Coronariana/genética , Elementos Facilitadores Genéticos , Variação Genética , Estudo de Associação Genômica Ampla , Genômica , Haplótipos , Humanos , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Fatores de RiscoRESUMO
SUMMARY: Multi-dimensional data generated via high-throughput experiments is increasingly used in conjunction with dimensionality reduction methods to ascertain if resulting separations of the data correspond with known classes. This is particularly useful to determine if a subset of the variables, e.g. genes in a specific pathway, alone can separate samples into these established classes. Despite this, the evaluation of class separations is often subjective and performed via visualization. Here we present the ClusterSignificance package; a set of tools designed to assess the statistical significance of class separations downstream of dimensionality reduction algorithms. In addition, we demonstrate the design and utility of the ClusterSignificance package and utilize it to determine the importance of long non-coding RNA expression in the identity of multiple hematological malignancies. AVAILABILITY AND IMPLEMENTATION: ClusterSignificance is an R package available via Bioconductor (https://bioconductor.org/packages/ClusterSignificance) under GPL-3. CONTACT: dan.grander@ki.se. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos
Perfilação da Expressão Gênica/métodos , Software , Algoritmos , Análise por Conglomerados , Interpretação Estatística de Dados , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Humanos , RNA Longo não Codificante/metabolismoRESUMO
OBJECTIVES: Vaccination of patients with rheumatic disease has been reported to result in lower antibody titres than in healthy individuals. However, studies primarily include patients on immunosuppressive therapy. Here, we investigated the immune response of treatment-naïve patients diagnosed with primary Sjögren's syndrome (pSS) to an H1N1 influenza vaccine. METHODS: Patients with Sjögren's syndrome without immunomodulatory treatment and age-matched and gender-matched healthy controls were immunised with an H1N1 influenza vaccine and monitored for serological and cellular immune responses. Clinical symptoms were monitored with a standardised form. IgG class switch and plasma cell differentiation were induced in vitro in purified naïve B cells of untreated and hydroxychloroquine-treated patients and healthy controls. Gene expression was assessed by NanoString technology. RESULTS: Surprisingly, treatment-naïve patients with Sjögren's syndrome developed higher H1N1 IgG titres of greater avidity than healthy controls on vaccination. Notably, off-target B cells were also triggered resulting in increased anti-EBV and autoantibody titres. Endosomal toll-like receptor activation of naïve B cells in vitro revealed a greater propensity of patient-derived cells to differentiate into plasmablasts and higher production of class switched IgG. The amplified plasma cell differentiation and class switch could be induced in cells from healthy donors by preincubation with type 1 interferon, but was abolished in hydroxychloroquine-treated patients and after in vitro exposure of naïve B cells to chloroquine. CONCLUSIONS: This comprehensive analysis of the immune response in autoimmune patients to exogenous stimulation identifies a mechanistic basis for the B cell hyperactivity in Sjögren's syndrome, and suggests that caution is warranted when considering vaccination in non-treated autoimmune patients.
Assuntos
Anticorpos Antivirais/sangue , Linfócitos B , Citocinas/sangue , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Síndrome de Sjogren/imunologia , Antígenos CD19/análise , Antirreumáticos/farmacologia , Autoanticorpos/biossíntese , Autoantígenos/imunologia , Linfócitos B/química , Linfócitos B/fisiologia , Estudos de Casos e Controles , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Expressão Gênica , Antígenos HLA-DR/análise , Herpesvirus Humano 4/imunologia , Humanos , Hidroxicloroquina/farmacologia , Imunoglobulina D/análise , Imunoglobulina G/sangue , Interferon-alfa/metabolismo , Interferon-alfa/farmacologia , Interleucina-10/farmacologia , Ativação Linfocitária , Contagem de Linfócitos , Ribonucleoproteínas/imunologia , Transdução de Sinais/genética , Síndrome de Sjogren/genética , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Transcriptoma , Vacinação , Antígeno SS-BRESUMO
Background. The coronary heart disease (CHD) risk locus on 21q22 (lead SNP rs9982601) lies within a "gene desert." The aim of this study was to assess if this locus is associated with CHD risk factors and to identify the functional variant(s) and gene(s) involved. Methods. A phenome scan was performed with UCLEB Consortium data. Allele-specific protein binding was studied using electrophoretic mobility shift assays. Dual-reporter luciferase assays were used to assess the impact of genetic variation on expression. Expression quantitative trait analysis was performed with Advanced Study of Aortic Pathology (ASAP) and Genotype-Tissue Expression (GTEx) consortium data. Results. A suggestive association between QT interval and the locus was observed (rs9982601 p = 0.04). One variant at the locus, rs28451064, showed allele-specific protein binding and its minor allele showed 12% higher luciferase expression (p = 4.82 × 10-3) compared to the common allele. The minor allele of rs9982601 was associated with higher expression of the closest upstream genes (SLC5A3 1.30-fold increase p = 3.98 × 10-5; MRPS6 1.15-fold increase p = 9.60 × 10-4) in aortic intima media in ASAP. Both rs9982601 and rs28451064 showed a suggestive association with MRPS6 expression in relevant tissues in the GTEx data. Conclusions. A candidate functional variant, rs28451064, was identified. Future work should focus on identifying the pathway(s) involved.
Assuntos
Cromossomos Humanos Par 21/genética , Doença das Coronárias/genética , Loci Gênicos , Síndrome do QT Longo/genética , Células Hep G2 , Humanos , Polimorfismo de Nucleotídeo ÚnicoRESUMO
BACKGROUND AND AIMS: Annexin-A2 (AnxA2) is an endogenous inhibitor of proprotein convertase subtilisin/kexin type-9 (PCSK9). The repeat-one (R1) domain of AnxA2 binds to PCSK9, blocking its ability to promote degradation of low-density lipoprotein cholesterol-receptors (LDL-R) and thereby regulate low-density lipoprotein cholesterol (LDL-C) levels. Here we identify variants in ANXA2 influencing LDL-C levels and we determine the molecular mechanisms of their effects. RESULTS: The ANXA2 single nucleotide polymorphism (SNP) genotype-phenotype association was examined using the Second-Northwick-Park Heart Study (NPHSII) (nâ¼2700) and the UCL-LSHTM-Edinburgh-Bristol (UCLEB) consortium (nâ¼14,600). The ANXA2-R1 domain coding-SNP rs17845226 (V98L) associated with LDL-C, homozygotes for the minor allele having ≈18.8% higher levels of LDL-C (p = 0.004), and higher risk of coronary heart disease (CHD) (p = 0.04). The SNP is in modest linkage disequilibrium (r2 > 0.5) with two intergenic SNPs, rs17191344 and rs11633032. Both SNPs showed allele-specific protein binding, and the minor alleles caused significant reduction in reporter gene expression (≈18%, p < 0.001). In the expression quantitative trait loci (eQTL) study, minor allele homozygotes have significantly lower levels of ANXA2-mRNA expression (p = 1.36 × 10-05). CONCLUSIONS: Both rs11633032 and rs17191344 SNPs are functional variants, where the minor alleles create repressor-binding protein sites for transcription factors that contribute to reduced ANXA2 gene expression. Lower AnxA2 levels could increase plasma levels of PCSK9 and thus increase LDL-C levels and risk of CHD. This supports, for the first time in humans, previous observations in mouse models that changes in the levels of AnxA2 directly influence plasma LDL-C levels, and thus implicate this protein as a potential therapeutic target for LDL-C lowering.
Assuntos
Anexina A2/genética , LDL-Colesterol/sangue , Doença das Coronárias/sangue , Doença das Coronárias/genética , Polimorfismo de Nucleotídeo Único , Anexina A2/metabolismo , Biomarcadores/sangue , Biologia Computacional , Doença das Coronárias/diagnóstico , Bases de Dados Genéticas , Feminino , Frequência do Gene , Genes Reporter , Estudos de Associação Genética , Predisposição Genética para Doença , Células Hep G2 , Heterozigoto , Homozigoto , Humanos , Células K562 , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , Fenótipo , Pró-Proteína Convertase 9/metabolismo , Locos de Características Quantitativas , Transfecção , Reino UnidoRESUMO
BACKGROUND: Here we integrate verified signals from previous genetic association studies with gene expression and pathway analysis for discovery of new candidate genes and signaling networks, relevant for rheumatoid arthritis (RA). METHOD: RNA-sequencing-(RNA-seq)-based expression analysis of 377 genes from previously verified RA-associated loci was performed in blood cells from 5 newly diagnosed, non-treated patients with RA, 7 patients with treated RA and 12 healthy controls. Differentially expressed genes sharing a similar expression pattern in treated and untreated RA sub-groups were selected for pathway analysis. A set of "connector" genes derived from pathway analysis was tested for differential expression in the initial discovery cohort and validated in blood cells from 73 patients with RA and in 35 healthy controls. RESULTS: There were 11 qualifying genes selected for pathway analysis and these were grouped into two evidence-based functional networks, containing 29 and 27 additional connector molecules. The expression of genes, corresponding to connector molecules was then tested in the initial RNA-seq data. Differences in the expression of ERBB2, TP53 and THOP1 were similar in both treated and non-treated patients with RA and an additional nine genes were differentially expressed in at least one group of patients compared to healthy controls. The ERBB2, TP53. THOP1 expression profile was successfully replicated in RNA-seq data from peripheral blood mononuclear cells from healthy controls and non-treated patients with RA, in an independent collection of samples. CONCLUSION: Integration of RNA-seq data with findings from association studies, and consequent pathway analysis implicate new candidate genes, ERBB2, TP53 and THOP1 in the pathogenesis of RA.
Assuntos
Artrite Reumatoide/genética , Perfilação da Expressão Gênica/métodos , Predisposição Genética para Doença/genética , Transdução de Sinais/genética , Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Análise por Conglomerados , Estudos de Coortes , Feminino , Redes Reguladoras de Genes , Humanos , Metaloendopeptidases/genética , Metotrexato/uso terapêutico , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Receptor ErbB-2/genética , Análise de Sequência de RNA/métodos , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/genéticaRESUMO
Tissue-resident memory T (Trm) cells form a heterogeneous population that provides localized protection against pathogens. Here, we identify CD49a as a marker that differentiates CD8+ Trm cells on a compartmental and functional basis. In human skin epithelia, CD8+CD49a+ Trm cells produced interferon-γ, whereas CD8+CD49a- Trm cells produced interleukin-17 (IL-17). In addition, CD8+CD49a+ Trm cells from healthy skin rapidly induced the expression of the effector molecules perforin and granzyme B when stimulated with IL-15, thereby promoting a strong cytotoxic response. In skin from patients with vitiligo, where melanocytes are eradicated locally, CD8+CD49a+ Trm cells that constitutively expressed perforin and granzyme B accumulated both in the epidermis and dermis. Conversely, CD8+CD49a- Trm cells from psoriasis lesions predominantly generated IL-17 responses that promote local inflammation in this skin disease. Overall, CD49a expression delineates CD8+ Trm cell specialization in human epithelial barriers and correlates with the effector cell balance found in distinct inflammatory skin diseases.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Citotoxicidade Imunológica/imunologia , Integrina alfa1/imunologia , Pele/imunologia , Subpopulações de Linfócitos T/imunologia , Separação Celular , Citometria de Fluxo , Humanos , Memória Imunológica/imunologia , Integrina alfa1/biossíntese , Ativação Linfocitária/imunologia , Microscopia Confocal , Psoríase/imunologia , Vitiligo/imunologiaRESUMO
AIMS: Processes in the development of atherosclerotic lesions can lead to plaque rupture or erosion, which can in turn elicit myocardial infarction or ischaemic stroke. The aims of this study were to determine whether Toll-like receptor 7 (TLR7) gene expression levels influence patient outcome and to explore the mechanisms linked to TLR7 expression in atherosclerosis. METHODS AND RESULTS: Atherosclerotic plaques were removed by carotid endarterectomy (CEA) and subjected to gene array expression analysis (n = 123). Increased levels of TLR7 transcript in the plaques were associated with better outcome in a follow-up study over a maximum of 8 years. Patients with higher TLR7 transcript levels had a lower risk of experiencing major cardiovascular and cerebrovascular events (MACCE) during the follow-up period after CEA (hazard ratio: 2.38, P = 0.012, 95% CI 1.21-4.67). TLR7 was expressed in all plaques by T cells, macrophages and endothelial cells in capillaries, as shown by immunohistochemistry. In short-term tissue cultures, ex vivo treatment of plaques with the TLR7 ligand imiquimod elicited dose-dependent secretion of IL-10, TNF-α, GM-CSF, and IL-12/IL-23p40. This secretion was blocked with a TLR7 inhibitor. Immunofluorescent tissue analysis after TLR7 stimulation showed IL-10 expression in T cells, macrophages and vascular smooth muscle cells. TLR7 mRNA levels in the plaques were correlated with IL-10 receptor (r = 0.4031, P < 0.0001) and GM-CSF receptor A (r = 0.4354, P < 0.0001) transcripts. CONCLUSION: These findings demonstrate that TLR7 is abundantly expressed in human atherosclerotic plaques. TLR7 ligation elicits the secretion of pro-inflammatory and anti-inflammatory cytokines, and high TLR7 expression in plaques is associated with better patient outcome, suggesting that TLR7 is a potential therapeutic target for prevention of complications of atherosclerosis.
Assuntos
Artérias Carótidas/metabolismo , Doenças das Artérias Carótidas/metabolismo , Transtornos Cerebrovasculares/metabolismo , Cardiopatias/metabolismo , Placa Aterosclerótica , Receptor 7 Toll-Like/metabolismo , Idoso , Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/patologia , Doenças das Artérias Carótidas/genética , Doenças das Artérias Carótidas/patologia , Doenças das Artérias Carótidas/cirurgia , Estudos de Casos e Controles , Células Cultivadas , Transtornos Cerebrovasculares/genética , Transtornos Cerebrovasculares/patologia , Transtornos Cerebrovasculares/prevenção & controle , Citocinas/metabolismo , Intervalo Livre de Doença , Endarterectomia das Carótidas , Feminino , Cardiopatias/genética , Cardiopatias/patologia , Cardiopatias/prevenção & controle , Humanos , Mediadores da Inflamação/metabolismo , Estimativa de Kaplan-Meier , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Risco , Transdução de Sinais , Linfócitos T/metabolismo , Fatores de Tempo , Receptor 7 Toll-Like/efeitos dos fármacos , Receptor 7 Toll-Like/genética , Transcriptoma , Resultado do TratamentoRESUMO
BACKGROUND: Lesional and systemic oxidative stress has been implicated in the pathogenesis of atherosclerosis, potentially leading to accumulation of DNA base lesions within atherosclerotic plaques. Although base excision repair (BER) is a major pathway counteracting oxidative DNA damage, our knowledge on BER and accumulation of DNA base lesions in clinical atherosclerosis is scarce. Here, we evaluated the transcriptional profile of a wide spectrum of BER components as well as DNA damage accumulation in atherosclerotic and non-atherosclerotic arteries. METHODS: BER gene expression levels were analyzed in 162 carotid plaques, 8 disease-free carotid specimens from patients with carotid plaques and 10 non-atherosclerotic control arteries. Genomic integrity, mitochondrial (mt) DNA copy number, oxidative DNA damage and BER proteins were evaluated in a subgroup of plaques and controls. RESULTS: Our major findings were: (i) The BER pathway showed a global increased transcriptional response in plaques as compared to control arteries, accompanied by increased expression of several BER proteins. (ii) Whereas nuclear DNA stability was maintained within carotid plaques, mtDNA integrity and copy number were decreased. (iii) Within carotid plaques, mRNA levels of several BER genes correlated with macrophage markers. (iv) In vitro, some of the BER genes were highly expressed in the anti-inflammatory and pro-resolving M2 macrophages, showing increased expression upon exposure to modified lipids. CONCLUSIONS: The increased transcriptional response of BER genes in atherosclerosis may contribute to lesional nuclear DNA stability but appears insufficient to maintain mtDNA integrity, potentially influencing mitochondrial function in cells within the atherosclerotic lesion.
Assuntos
Artérias Carótidas/metabolismo , Doenças das Artérias Carótidas/genética , Reparo do DNA , DNA Mitocondrial/genética , Idoso , Artérias Carótidas/patologia , Doenças das Artérias Carótidas/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Dano ao DNA , Feminino , Expressão Gênica , Humanos , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismoRESUMO
Increasing evidence suggests that oxidative DNA damage accumulates in atherosclerosis. Recently, we showed that a genetic variant in the human DNA repair enzyme NEIL3 was associated with increased risk of myocardial infarction. Here, we explored the role of Neil3/NEIL3 in atherogenesis by both clinical and experimental approaches. Human carotid plaques revealed increased NEIL3 mRNA expression which significantly correlated with mRNA levels of the macrophage marker CD68. Apoe(-/-)Neil3(-/-) mice on high-fat diet showed accelerated plaque formation as compared to Apoe(-/-) mice, reflecting an atherogenic lipid profile, increased hepatic triglyceride levels and attenuated macrophage cholesterol efflux capacity. Apoe(-/-)Neil3(-/-) mice showed marked alterations in several pathways affecting hepatic lipid metabolism, but no genotypic alterations in genome integrity or genome-wide accumulation of oxidative DNA damage. These results suggest a novel role for the DNA glycosylase Neil3 in atherogenesis in balancing lipid metabolism and macrophage function, potentially independently of genome-wide canonical base excision repair of oxidative DNA damage.
Assuntos
Aterosclerose/prevenção & controle , Reparo do DNA , Endodesoxirribonucleases/genética , Metabolismo dos Lipídeos , N-Glicosil Hidrolases/genética , Animais , Antígenos CD/genética , Antígenos de Diferenciação Mielomonocítica/genética , Aterosclerose/genética , Aterosclerose/metabolismo , Dano ao DNA , Modelos Animais de Doenças , Endodesoxirribonucleases/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Knockout para ApoE , N-Glicosil Hidrolases/metabolismo , Estresse OxidativoRESUMO
BACKGROUND: The NLR family, pyrin domain containing 3 (NLRP3) inflammasome is an interleukin (IL)-1ß and IL-18 cytokine processing complex that is activated in inflammatory conditions. The role of the NLRP3 inflammasome in the pathogenesis of atherosclerosis and myocardial infarction is not fully understood. METHODS AND RESULTS: Atherosclerotic plaques were analyzed for transcripts of the NLRP3 inflammasome, and for IL-1ß release. The Swedish First-ever myocardial Infarction study in Ac-county (FIA) cohort consisting of DNA from 555 myocardial infarction patients and 1016 healthy individuals was used to determine the frequency of 4 single nucleotide polymorphisms (SNPs) from the downstream regulatory region of NLRP3. Expression of NLRP3, Apoptosis-associated speck-like protein containing a CARD (ASC), caspase-1 (CASP1), IL1B, and IL18 mRNA was significantly increased in atherosclerotic plaques compared to normal arteries. The expression of NLRP3 mRNA was significantly higher in plaques of symptomatic patients when compared to asymptomatic ones. CD68-positive macrophages were observed in the same areas of atherosclerotic lesions as NLRP3 and ASC expression. Occasionally, expression of NLRP3 and ASC was also present in smooth muscle cells. Cholesterol crystals and ATP induced IL-1ß release from lipopolysaccharide-primed human atherosclerotic lesion plaques. The minor alleles of the variants rs4266924, rs6672995, and rs10733113 were associated with NLRP3 mRNA levels in peripheral blood mononuclear cells but not with the risk of myocardial infarction. CONCLUSIONS: Our results indicate a possible role of the NLRP3 inflammasome and its genetic variants in the pathogenesis of atherosclerosis.
Assuntos
Aterosclerose/genética , Infarto do Miocárdio/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Placa Aterosclerótica/genética , RNA Mensageiro/metabolismo , Aterosclerose/imunologia , Aterosclerose/metabolismo , Proteínas Adaptadoras de Sinalização CARD/genética , Caspase 1/genética , Quimiocina CCL2/imunologia , Genótipo , Humanos , Imuno-Histoquímica , Inflamassomos/genética , Inflamassomos/imunologia , Interleucina-18/genética , Interleucina-18/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Leucócitos Mononucleares/metabolismo , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Placa Aterosclerótica/imunologia , Placa Aterosclerótica/metabolismo , Polimorfismo de Nucleotídeo Único , Suécia , Fator de Necrose Tumoral alfa/imunologiaRESUMO
BACKGROUND: Carotid intima-media thickness (IMT) is a marker of subclinical atherosclerosis that can predict cardiovascular disease events over traditional risk factors. This study examined the BCAR1-CFDP1-TMEM170A locus on chromosome 16, associated with carotid IMT and coronary artery disease in the IMT and IMT-Progression as Predictors of Vascular Events (IMPROVE) cohort, to identify the functional variant. METHODS AND RESULTS: In analysis of the locus lead single nucleotide polymorphism (SNP; rs4888378, intronic in CFDP1) in Progressione della Lesione Intimale Carotidea (PLIC), the protective AA genotype was associated with slower IMT progression in women (P=0.04) but not in men. Meta-analysis of 5 cohort studies also supported a protective effect of the A allele on common carotid IMT in women only (women: ß=-0.0047, P=1.63 × 10(-4); men: ß=-0.0029, P=0.0678). Two hundred fourteen noncoding variants in strong linkage disequilibrium (r(2) ≥ 0.8) with rs4888378 were identified from 1000 Genome Project. ENCODE regulatory chromatin marks were used to create a shortlist of 6 possible regulatory variants. Electrophoretic mobility shift assays on the shortlist detected allele-specific protein binding to the lead SNP rs4888378; multiplexed competitor electrophoretic mobility shift assays implicated FOXA as the protein. Luciferase reporter assays on rs4888378 showed a significant 35% to 92% (P=0.0057; P=4.0 × 10(-22)) decrease in gene expression with the A allele. Expression quantitative trait loci analysis confirmed previously reported associations of rs4888378 with BCAR1 in vascular tissues. CONCLUSIONS: Molecular studies suggest the lead SNP as a potentially causal SNP at the BCAR1-CFDP1-TMEM170A locus, and expression quantitative trait loci studies implicate BCAR1 as the causal gene. This variant showed stronger effects on common carotid IMT in women, raising questions about the mechanism of the causal SNP on atherosclerosis.