Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
J Vis Exp ; (206)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38682919

RESUMO

Preclinical intravital imaging such as microscopy and optical coherence tomography have proven to be valuable tools in cancer research for visualizing the tumor microenvironment and its response to therapy. These imaging modalities have micron-scale resolution but have limited use in the clinic due to their shallow penetration depth into tissue. More clinically applicable imaging modalities such as CT, MRI, and PET have much greater penetration depth but have comparatively lower spatial resolution (mm scale). To translate preclinical intravital imaging findings into the clinic, new methods must be developed to bridge this micro-to-macro resolution gap. Here we describe a dorsal skinfold window chamber tumor mouse model designed to enable preclinical intravital and clinically applicable (CT and MR) imaging in the same animal, and the image analysis platform that links these two disparate visualization methods. Importantly, the described window chamber approach enables the different imaging modalities to be co-registered in 3D using fiducial markers on the window chamber for direct spatial concordance. This model can be used for validation of existing clinical imaging methods, as well as for the development of new ones through direct correlation with "ground truth" high-resolution intravital findings. Finally, the tumor response to various treatments-chemotherapy, radiotherapy, photodynamic therapy-can be monitored longitudinally with this methodology using preclinical and clinically applicable imaging modalities. The dorsal skinfold window chamber tumor mouse model and imaging platforms described here can thus be used in a variety of cancer research studies, for example, in translating preclinical intravital microscopy findings to more clinically applicable imaging modalities such as CT or MRI.


Assuntos
Microscopia Intravital , Imageamento por Ressonância Magnética , Pesquisa Translacional Biomédica , Animais , Camundongos , Microscopia Intravital/métodos , Imageamento por Ressonância Magnética/métodos , Pesquisa Translacional Biomédica/métodos , Modelos Animais de Doenças , Feminino
2.
Prostate ; 84(9): 823-831, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38606933

RESUMO

BACKGROUND: There are limited preclinical orthotopic prostate cancer models due to the technical complexity of surgical engraftment and tracking the tumor growth in the mouse prostate gland. Orthotopic xenografts recapitulate the tumor microenvironment, tumor stromal interactions, and clinical behavior to a greater extent than xenografts grown at subcutaneous or intramuscular sites. METHODS: This study describes a novel micro-surgical technique for orthotopically implanting intact tumors pieces from cell line derived (transgenic adenocarcinoma mouse prostate [TRAMP]-C2) or patient derived (neuroendocrine prostate cancer [NEPC]) tumors in the mouse prostate gland and monitoring tumor growth using magnetic resonance (MR) imaging. RESULTS: The TRAMP-C2 tumors grew rapidly to a predetermined endpoint size of 10 mm within 3 weeks, whereas the NEPC tumors grew at a slower rate over 7 weeks. The tumors were readily detected by MR and confidently identified when they were approximately 2-3 mm in size. The tumors were less well-defined on CT. The TRAMP-C2 tumors were characterized by amorphous sheets of poorly differentiated cells similar to a high-grade prostatic adenocarcinoma and frequent macroscopic peritoneal and lymph node metastases. In contrast, the NEPC's displayed a neuroendocrine morphology with polygonal cells arranged in nests and solid sheets and high count. There was a local invasion of the bladder and other adjacent tissues but no identifiable metastases. The TRAMP-C2 tumors were more hypoxic than the NEPC tumors. CONCLUSIONS: This novel preclinical orthotopic prostate cancer mouse model is suitable for either syngeneic or patient derived tumors and will be effective in developing and advancing the current selection of treatments for patients with prostate cancer.


Assuntos
Adenocarcinoma , Modelos Animais de Doenças , Neoplasias da Próstata , Animais , Masculino , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia , Neoplasias da Próstata/diagnóstico por imagem , Camundongos , Humanos , Adenocarcinoma/patologia , Adenocarcinoma/terapia , Linhagem Celular Tumoral , Camundongos Transgênicos , Transplante de Neoplasias/métodos , Imageamento por Ressonância Magnética , Carcinoma Neuroendócrino/patologia , Carcinoma Neuroendócrino/diagnóstico por imagem , Carcinoma Neuroendócrino/terapia
3.
Mater Today Bio ; 25: 100954, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38304342

RESUMO

Early and precise detection of solid tumor cancers is critical for improving therapeutic outcomes. In this regard, magnetic resonance imaging (MRI) has become a useful tool for tumor diagnosis and image-guided therapy. However, its effectiveness is limited by the shortcomings of clinically available gadolinium-based contrast agents (GBCAs), i.e. poor tumor penetration and retention, and safety concerns. Thus, we have developed a novel nanoparticulate contrast agent using a biocompatible terpolymer and lipids to encapsulate manganese dioxide nanoparticles (TPL-MDNP). The TPL-MDNP accumulated in tumor tissue and produced paramagnetic Mn2+ ions, enhancing T1-weight MRI contrast via the reaction with H2O2 rich in the acidic tumor microenvironment. Compared to the clinically used GBCA, Gadovist®1.0, TPL-MDNP generated stronger T1-weighted MR signals by over 2.0-fold at 30 % less of the recommended clinical dose with well-defined tumor delineation in preclinical orthotopic tumor models of brain, breast, prostate, and pancreas. Importantly, the MRI signals were retained for 60 min by TPL-MDNP, much longer than Gadovist®1.0. Biocompatibility of TPL-MDNP was evaluated and found to be safe up to 4-fold of the dose used for MRI. A robust large-scale manufacturing process was developed with batch-to-batch consistency. A lyophilization formulation was designed to maintain the nanostructure and storage stability of the new contrast agent.

4.
J Vis Exp ; (191)2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36715427

RESUMO

Magnetic resonance-guided high intensity focused ultrasound (MRgHIFU) is an established method for producing localized hyperthermia. Given the real-time imaging and acoustic energy modulation, this modality enables precise temperature control within a defined area. Many thermal applications are being explored with this noninvasive, nonionizing technology, such as hyperthermia generation, to release drugs from thermosensitive liposomal carriers. These drugs can include chemotherapies such as doxorubicin, for which targeted release is desired due to the dose-limiting systemic side effects, namely cardiotoxicity. Doxorubicin is a mainstay for treating a variety of malignant tumors and is commonly used in relapsed or recurrent rhabdomyosarcoma (RMS). RMS is the most common solid soft tissue extracranial tumor in children and young adults. Despite aggressive, multimodal therapy, RMS survival rates have remained the same for the past 30 years. To explore a solution for addressing this unmet need, an experimental protocol was developed to evaluate the release of thermosensitive liposomal doxorubicin (TLD) in an immunocompetent, syngeneic RMS mouse model using MRgHIFU as the source of hyperthermia for drug release.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Hipertermia Induzida , Rabdomiossarcoma , Camundongos , Animais , Hipertermia Induzida/métodos , Recidiva Local de Neoplasia/tratamento farmacológico , Doxorrubicina , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Rabdomiossarcoma/diagnóstico por imagem , Rabdomiossarcoma/terapia , Espectroscopia de Ressonância Magnética , Imageamento por Ressonância Magnética/métodos
5.
Phys Med ; 100: 90-98, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35777256

RESUMO

PURPOSE: The efficacy of MR-guided radiotherapy on a MR-LINAC (MR-L) is dependent on the geometric accuracy of its MR images over clinically relevant Fields-of-View (FOVs). Our objectives were to: evaluate gradient non-linearity (GNL) on the Elekta Unity MR-L across time via 76 weekly measurements of 3D-distortion over concentrically larger diameter spherical volumes (DSVs); quantify distortion measurement error; and assess the temporal stability of spatial distortion using statistical process control (SPC). METHODS: MR-image distortion was assessed using a large-FOV 3D-phantom containing 1932 markers embedded in seven parallel plates, spaced 25 mm × 25 mm in- and 55 mm through-plane. Automatically analyzed T1 images yielded distortions in 200, 300, 400 and 500 mm concentric DSVs. Distortion measurement error was evaluated using median absolute difference analysis of imaging repeatability tests. RESULTS: Over the measurement period absolute time-averaged distortion varied between: dr = 0.30 - 0.49 mm, 0.53 - 0.80 mm, 1.0 - 1.4 mm and 2.28 - 2.37 mm, for DSVs 200, 300, 400 and 500 mm at the 98th percentile level. Repeatability tests showed that imaging/repositioning introduces negligible error: mean ≤ 0.02 mm (max ≤ 0.3 mm). SPC analysis showed image distortion was stable across all DSVs; however, noticeable changes in GNL were observed following servicing at the one-year mark. CONCLUSIONS: Image distortion on the MR-L is in the sub-millimeter range for DSVs ≤ 300 mm and stable across time, with SPC analysis indicating all measurements remain within control for each DSV.


Assuntos
Imageamento por Ressonância Magnética , Aceleradores de Partículas , Imageamento Tridimensional , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Software
6.
Nat Commun ; 13(1): 4178, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35853870

RESUMO

Human cerebral cancers are known to contain cell types resembling the varying stages of neural development. However, the basis of this association remains unclear. Here, we map the development of mouse cerebrum across the developmental time-course, from embryonic day 12.5 to postnatal day 365, performing single-cell transcriptomics on >100,000 cells. By comparing this reference atlas to single-cell data from >100 glial tumours of the adult and paediatric human cerebrum, we find that tumour cells have an expression signature that overlaps with temporally restricted, embryonic radial glial precursors (RGPs) and their immediate sublineages. Further, we demonstrate that prenatal transformation of RGPs in a genetic mouse model gives rise to adult cerebral tumours that show an embryonic/juvenile RGP identity. Together, these findings implicate the acquisition of embryonic-like states in the genesis of adult glioma, providing insight into the origins of human glioma, and identifying specific developmental cell types for therapeutic targeting.


Assuntos
Cérebro , Glioma , Animais , Encéfalo , Criança , Glioma/genética , Humanos , Camundongos , Neurogênese , Telencéfalo
7.
Sci Rep ; 12(1): 3159, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35210476

RESUMO

Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is emerging as a valuable tool for non-invasive volumetric monitoring of the tumor vascular status and its therapeutic response. However, clinical utility of DCE-MRI is challenged by uncertainty in its ability to quantify the tumor microvasculature ([Formula: see text] scale) given its relatively poor spatial resolution (mm scale at best). To address this challenge, we directly compared DCE-MRI parameter maps with co-registered micron-scale-resolution speckle variance optical coherence tomography (svOCT) microvascular images in a window chamber tumor mouse model. Both semi and fully quantitative (Toft's model) DCE-MRI metrics were tested for correlation with microvascular svOCT biomarkers. svOCT's derived vascular volume fraction (VVF) and the mean distance to nearest vessel ([Formula: see text]) metrics were correlated with DCE-MRI vascular biomarkers such as time to peak contrast enhancement ([Formula: see text] and [Formula: see text] respectively, [Formula: see text] for both), the area under the gadolinium-time concentration curve ([Formula: see text] and [Formula: see text] respectively, [Formula: see text] for both) and [Formula: see text] ([Formula: see text] and [Formula: see text] respectively, [Formula: see text] for both). Several other correlated micro-macro vascular metric pairs were also noted. The microvascular insights afforded by svOCT may help improve the clinical utility of DCE-MRI for tissue functional status assessment and therapeutic response monitoring applications.

8.
Radiother Oncol ; 149: 240-245, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32447033

RESUMO

PURPOSE: To report dosimetry, preliminary toxicity and health-related quality of life (HRQoL) outcomes of tumor-targeted dose-escalation delivered by integrated boost volumetric arc therapy (IB-VMAT) or MR-guided HDR brachytherapy (HDR) boost for prostate cancer. MATERIALS AND METHODS: Patients diagnosed with localized prostate cancer, with at least 1 identifiable intraprostatic lesion on multiparametric MRI (mpMRI) were enrolled in a prospective non-randomized phase II study. All patients received VMAT to the prostate alone (76 Gy in 38 fractions) plus a GTV boost: IB-VMAT (95 Gy in 38 fractions) or MR-guided HDR (10 Gy single fraction). GTV was delineated on mpMRI and deformably registered to planning CT scans. Comparative dosimetry using EQD2 assuming α/ß 3 Gy was performed. Toxicity and health-related quality of life data (HRQoL) data were collected using CTCAE v.4.0, International Prostate Symptom Score (IPSS) and the Expanded Prostate Index Composite (EPIC). RESULTS: Forty patients received IB-VMAT and 40 HDR boost. Organs at risk and target minimal doses were comparable between the two arms. HDR achieved higher mean and maximal tumor doses (p < 0.05). Median follow-up was 31 months (range 25-48); Acute grade G2 genitourinary (GU) toxicity was 30% and 37.5% in IB-VMAT and HDR boost, while gastrointestinal (GI) toxicity was 7.5% and 10%, respectively. Three patients developed acute G3 events, two GU toxicity (one IB-VMAT and one HDR boost) and one GI (IB-VMAT). Late G2 GU toxicity was 25% and 17.5% in the IB-VMAT and HDR boost arm and G2 GI was 5% and 7.5%, respectively. Two patients, both on the IB-VMAT arm, developed late G3 toxicity: one GI and one GU. No statistically significant difference was found in HRQoL between radiotherapy techniques (p > 0.2). Urinary and bowel HRQoL domains in both groups declined significantly by week 6 of treatment in both arms (p < 0.05) and recovered baseline scores at 6 months. CONCLUSION: Intraprostatic tumor dose escalation using IB-VMAT or MR-guided HDR boost achieved comparable OAR dosimetry, toxicity and HRQOL outcomes, but higher mean and maximal tumor dose were achieved with the HDR technique. Further follow-up will determine long-term outcomes including disease control.


Assuntos
Braquiterapia , Neoplasias da Próstata , Lesões por Radiação , Braquiterapia/efeitos adversos , Humanos , Masculino , Estudos Prospectivos , Neoplasias da Próstata/radioterapia , Qualidade de Vida , Dosagem Radioterapêutica
9.
Sci Rep ; 10(1): 1638, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005829

RESUMO

Hypoxia, the state of low oxygenation that often arises in solid tumours due to their high metabolism and irregular vasculature, is a major contributor to the resistance of tumours to radiation therapy (RT) and other treatments. Conventional RT extends treatment over several weeks or more, and nominally allows time for oxygen levels to increase ("reoxygenation") as cancer cells are killed by RT, mitigating the impact of hypoxia. Recent advances in RT have led to an increase in the use stereotactic body radiotherapy (SBRT), which delivers high doses in five or fewer fractions. For cancers such as pancreatic adenocarcinoma for which hypoxia varies significantly between patients, SBRT might not be optimal, depending on the extent to which reoxygenation occurs during its short duration. We used fluoro-5-deoxy-α-D-arabinofuranosyl)-2-nitroimidazole positron-emission tomography (FAZA-PET) imaging to quantify hypoxia before and after 5-fraction SBRT delivered to patient-derived pancreatic cancer xenografts orthotopically implanted in mice. An imaging technique using only the pre-treatment FAZA-PET scan and repeat dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) scans throughout treatment was able to predict the change in hypoxia. Our results support the further testing of this technique for imaging of reoxygenation in the clinic.


Assuntos
Oxigênio/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/radioterapia , Adenocarcinoma/metabolismo , Adenocarcinoma/radioterapia , Animais , Humanos , Hipóxia/metabolismo , Hipóxia/radioterapia , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/uso terapêutico , Radiocirurgia/métodos , Neoplasias Pancreáticas
10.
Radiother Oncol ; 143: 88-94, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477335

RESUMO

PURPOSE: The aims of this study are to evaluate the stability of radiomic features from Apparent Diffusion Coefficient (ADC) maps of cervical cancer with respect to: (1) reproducibility in inter-observer delineation, and (2) image pre-processing (normalization/quantization) prior to feature extraction. MATERIALS AND METHODS: Two observers manually delineated the tumor on ADC maps derived from pre-treatment diffusion-weighted Magnetic Resonance imaging of 81 patients with FIGO stage IB-IVA cervical cancer. First-order, shape, and texture features were extracted from the original and filtered images considering 5 different normalizations (four taken from the available literature, and one based on urine ADC) and two different quantization techniques (fixed-bin widths from 0.05 to 25, and fixed-bin count). Stability of radiomic features was assessed using intraclass correlation coefficient (ICC): poor (ICC < 0.75); good (0.75 ≤ ICC ≤ 0.89), and excellent (ICC ≥ 0.90). Dependencies of the features with tumor volume were assessed using Spearman's correlation coefficient (ρ). RESULTS: The approach using urine-normalized values together with a smaller bin width (0.05) was the most reproducible (428/552, 78% features with ICC ≥ 0.75); the fixed-bin count approach was the least (215/552, 39% with ICC ≥ 0.75). Without normalization, using a fixed bin width of 25, 348/552 (63%) of features had an ICC ≥ 0.75. Overall, 26% (range 25-30%) of the features were volume-dependent (ρ ≥ 0.6). None of the volume-independent shape features were found to be reproducible. CONCLUSION: Applying normalization prior to features extraction increases the reproducibility of ADC-based radiomics features. When normalization is applied, a fixed-bin width approach with smaller widths is suggested.


Assuntos
Neoplasias do Colo do Útero , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Variações Dependentes do Observador , Reprodutibilidade dos Testes , Neoplasias do Colo do Útero/diagnóstico por imagem
11.
J Clin Med ; 8(12)2019 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-31847378

RESUMO

BACKGROUND: Malignant gliomas are highly invasive and extremely difficult to treat tumours with poor prognosis and outcomes. Photodynamic therapy (PDT), mediated by Gleolan®, has been studied previously with partial success in treating these tumours and extending lifetime. We aim to determine whether combining PDT using ALA-protoporphyrin IX (PpIX) with a liposomal formulation of the clinical epidermal growth factor receptor (EGFR) inhibitor, lapatinib, would increase the anti-tumour PDT efficacy. METHODS: Lapatinib was given in vitro and in vivo 24 h prior to PDT and for 3-5 days following PDT to elicit whether the combination provided any benefits to PDT therapy. Live-cell imaging, in vitro PDT, and in vivo studies were performed to elucidate the effect lapatinib had on PDT for a variety of glioma cell lines and as well as GSC-30 neurospheres in vivo. RESULTS: PDT combined with lapatinib led to a significant increase in PpIX accumulation, and reductions in the LD50 of PpIX mediated PDT in two EGFR-driven cell lines, U87 and U87vIII, tested (p < 0.05). PDT + lapatinib elicited stronger MRI-quantified glioma responses following PDT for two human glioma-derived tumours (U87 and GSC-30) in vivo (p < 0.05). Furthermore, PDT leads to enhanced survival in rats following treatment with lapatinib compared to lapatinib alone and PDT alone (p < 0.05). CONCLUSIONS: As lapatinib is approved for other oncological indications, a realization of its potential combination with PDT and in fluorescence-guided resection could be readily tested clinically. Furthermore, as its use would only be in acute settings, long-term resistance should not pose an issue as compared to its use as monotherapy.

12.
Tomography ; 5(1): 77-89, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30854445

RESUMO

Accurate, patient-specific measurement of arterial input functions (AIF) may improve model-based analysis of vascular permeability. This study investigated factors affecting AIF measurements from magnetic resonance imaging (MRI) magnitude (AIFMAGN) and phase (AIFPHA) signals, and compared them against computed tomography (CT) (AIFCT), under controlled conditions relevant to clinical protocols using a multimodality flow phantom. The flow phantom was applied at flip angles of 20° and 30°, flow rates (3-7.5 mL/s), and peak bolus concentrations (0.5-10 mM), for in-plane and through-plane flow. Spatial 3D-FLASH signal and variable flip angle T1 profiles were measured to investigate in-flow and radiofrequency-related biases, and magnitude- and phase-derived Gd-DTPA concentrations were compared. MRI AIF performance was tested against AIFCT via Pearson correlation analysis. AIFMAGN was sensitive to imaging orientation, spatial location, flip angle, and flow rate, and it grossly underestimated AIFCT peak concentrations. Conversion to Gd-DTPA concentration using T1 taken at the same orientation and flow rate as the dynamic contrast-enhanced acquisition improved AIFMAGN accuracy; yet, AIFMAGN metrics remained variable and significantly reduced from AIFCT at concentrations above 2.5 mM. AIFPHA performed equivalently within 1 mM to AIFCT across all tested conditions. AIFPHA, but not AIFMAGN, reported equivalent measurements to AIFCT across the range of tested conditions. AIFPHA showed superior robustness.


Assuntos
Permeabilidade Capilar , Imageamento por Ressonância Magnética/métodos , Neoplasias/irrigação sanguínea , Artérias/diagnóstico por imagem , Artérias/fisiopatologia , Meios de Contraste , Gadolínio DTPA , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imagem Multimodal/métodos , Neovascularização Patológica/diagnóstico por imagem , Imagens de Fantasmas , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X
13.
J Neurosurg ; 132(2): 586-594, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30797197

RESUMO

OBJECTIVE: Physicians are more frequently encountering patients who are treated with deep brain stimulation (DBS), yet many MRI centers do not routinely perform MRI in this population. This warrants a safety assessment to improve DBS patients' accessibility to MRI, thereby improving their care while simultaneously providing a new tool for neuromodulation research. METHODS: A phantom simulating a patient with a DBS neuromodulation device (DBS lead model 3387 and IPG Activa PC model 37601) was constructed and used. Temperature changes at the most ventral DBS electrode contacts, implantable pulse generator (IPG) voltages, specific absorption rate (SAR), and B1+rms were recorded during 3-T MRI scanning. Safety data were acquired with a transmit body multi-array receive and quadrature transmit-receive head coil during various pulse sequences, using numerous DBS configurations from "the worst" to "the most common."In addition, 3-T MRI scanning (T1 and fMRI) was performed on 41 patients with fully internalized and active DBS using a quadrature transmit-receive head coil. MR images, neurological examination findings, and stability of the IPG impedances were assessed. RESULTS: In the phantom study, temperature rises at the DBS electrodes were less than 2°C for both coils during 3D SPGR, EPI, DTI, and SWI. Sequences with intense radiofrequency pulses such as T2-weighted sequences may cause higher heating (due to their higher SAR). The IPG did not power off and kept a constant firing rate, and its average voltage output was unchanged. The 41 DBS patients underwent 3-T MRI with no adverse event. CONCLUSIONS: Under the experimental conditions used in this study, 3-T MRI scanning of DBS patients with selected pulse sequences appears to be safe. Generally, T2-weighted sequences (using routine protocols) should be avoided in DBS patients. Complementary 3-T MRI phantom safety data suggest that imaging conditions that are less restrictive than those used in the patients in this study, such as using transmit body multi-array receive coils, may also be safe. Given the interplay between the implanted DBS neuromodulation device and the MRI system, these findings are specific to the experimental conditions in this study.


Assuntos
Estimulação Encefálica Profunda/efeitos adversos , Imageamento por Ressonância Magnética/efeitos adversos , Neuroimagem/métodos , Idoso , Contraindicações de Procedimentos , Estimulação Encefálica Profunda/instrumentação , Impedância Elétrica , Eletrodos Implantados , Feminino , Temperatura Alta , Humanos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas
14.
Neurooncol Adv ; 1(1): vdz006, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32642649

RESUMO

BACKGROUND: Glioblastoma is an aggressive brain cancer in adults with a grave prognosis, aggressive radio and chemotherapy provide only a 15 months median survival. METHODS: We evaluated the tolerability and efficacy of the Ruthenium-based photosensitizer TLD-1433 with apo-Transferrin (Rutherrin) in the rat glioma 2 (RG-2) model. The specific tumor uptake ratio and photodynamic therapy (PDT) threshold of the rat glioblastoma and normal brain were determined, survival and CD8+T-cell infiltration post-therapy were analyzed. Results were compared with those obtained for 5-aminolevulinic acid (ALA)-induced Protoporphyrin IX (PpIX)-mediated photodynamic therapy in the same animal model. As both photosensitizers have different photophysical properties, the number of absorbed photons required to achieve an equal cell kill was determined for in vitro and in vivo studies. RESULTS: A significantly lower absorbed energy was sufficient to achieve LD50 with Rutherrin versus PpIX-mediated PDT. Rutherrin provides a higher specific uptake ratio (SUR) >20 in tumors versus normal brain, whereas the SUR for ALA-induced PpIX was 10.6. To evaluate the short-term tissue response in vivo, enhanced T2-weighted magnetic resonance imaging (MRI) provided the spatial extent of edema, post PpIX-PDT at twice the cross-section versus Rutherrin-PDT suggesting reduced nonspecific damage, typically associated with a secondary wave of neuronal damage. Following a single therapy, a significant survival increase was observed in rats bearing glioma for PDT mediated by Rutherrin versus PpIX for the selected treatment conditions. Rutherrin-PDT also demonstrated an increased CD8+T-cell infiltration in the tumors. CONCLUSION: Rutherrin-PDT was well tolerated providing a safe and effective treatment of RG-2 glioma.

15.
Br J Radiol ; 92(1096): 20170461, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30235004

RESUMO

OBJECTIVE:: Early changes in tumour behaviour following stereotactic radiosurgery) are potential biomarkers of response. To-date quantitative model-based measures of dynamic contrast-enhanced (DCE) and diffusion-weighted (DW) MRI parameters have shown widely variable findings, which may be attributable to variability in image acquisition, post-processing and analysis. Big data analytic approaches are needed for the automation of computationally intensive modelling calculations for every voxel, independent of observer interpretation. METHODS:: This unified platform is a voxel-based, multimodality architecture that brings complimentary solute transport processes such as perfusion and diffusion into a common framework. The methodology was tested on synthetic data and digital reference objects and consequently evaluated in patients who underwent volumetric DCE-CT, DCE-MRI and DWI-MRI scans before and after treatment. Three-dimensional pharmacokinetic parameter maps from both modalities were compared as well as the correlation between apparent diffusion coefficient (ADC) values and the extravascular, extracellular volume (Ve). Comparison of histogram parameters was done via Bland-Altman analysis, as well as Student's t-test and Pearson's correlation using two-sided analysis. RESULTS:: System testing on synthetic Tofts model data and digital reference objects recovered the ground truth parameters with mean relative percent error of 1.07 × 10-7 and 5.60 × 10-4 respectively. Direct voxel-to-voxel Pearson's analysis showed statistically significant correlations between CT and MR which peaked at Day 7 for Ktrans (R = 0.74, p <= 0.0001). Statistically significant correlations were also present between ADC and Ve derived from both DCE-MRI and DCE-CT with highest median correlations found at Day 3 between median ADC and Ve,MRI values (R = 0.6, p < 0.01) The strongest correlation to DCE-CT measurements was found with DCE-MRI analysis using voxelwise T10 maps (R = 0.575, p < 0.001) instead of assigning a fixed T10 value. CONCLUSION:: The unified implementation of multiparametric transport modelling allowed for more robust and timely observer-independent data analytics. Utility of a common analysis platform has shown higher correlations between pharmacokinetic parameters obtained from different modalities than has previously been reported. ADVANCES IN KNOWLEDGE:: Utility of a common analysis platform has shown statistically higher correlations between pharmacokinetic parameters obtained from different modalities than has previously been reported.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Meios de Contraste , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X/métodos , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Humanos , Imageamento Tridimensional/métodos , Imagem Multimodal/métodos , Radiocirurgia/métodos , Resultado do Tratamento
16.
Phys Imaging Radiat Oncol ; 9: 1-6, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33458419

RESUMO

BACKGROUND AND PURPOSE: Dose escalation has improved cancer outcomes for patients with localized prostate cancer. Targeting subprostatic tumor regions for dose intensification may further improve outcomes. Apparent Diffusion Coefficient (ADC) maps may enable early radiation response assessment and dose adaptation. This study was a proof-of-principle investigation of early changes in ADC radiomics features for patients undergoing radiotherapy with dose escalation to the gross tumor volume (GTV). MATERIALS AND METHODS: Fifty-nine patients were enrolled on a prospective tumor dose-escalation trial. Multi-parametric MRI was performed at baseline and week six, corresponding to the time of peak ADC change. GTV and prostate contours were deformably registered between baseline and week six T2-weighted images, and applied to ADC maps, to account for diminished image contrast post-EBRT and possible differences in prostate gland volume, shape, and orientation. A total of 101 radiomics features were tested for significant change post-EBRT using two-tailed Student's t-test. All ADC features of the prostate and GTV volumes were correlated using Pearson's coefficient (p < 0.00008, based on Bonferroni correction). RESULTS: ADC feature extraction was insensitive to b = 0 s/mm2 exclusion, and to gradient non-linearity bias. GTV presented predominant changes in first-order features, particularly 10Percentile, and prostate volumes presented predominant changes in second-order features. Changes in both first and second-order features of GTV and prostate ROIs were strongly correlated. CONCLUSIONS: Our data confirmed significant changes in numerous GTV and prostate features assessed from ADC and T2-weighted images during radiotherapy; all of which may be potential biomarkers of early radiation response.

17.
JACC Basic Transl Sci ; 4(8): 940-958, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31909302

RESUMO

Heart failure (HF) and subarachnoid hemorrhage (SAH) chronically reduce cerebral perfusion, which negatively affects clinical outcome. This work demonstrates a strong relationship between cerebral artery cystic fibrosis transmembrane conductance regulator (CFTR) expression and altered cerebrovascular reactivity in HF and SAH. In HF and SAH, CFTR corrector compounds (C18 or lumacaftor) normalize pathological alterations in cerebral artery CFTR expression, vascular reactivity, and cerebral perfusion, without affecting systemic hemodynamic parameters. This normalization correlates with reduced neuronal injury. Therefore, CFTR therapeutics have emerged as valuable clinical tools to manage cerebrovascular dysfunction, impaired cerebral perfusion, and neuronal injury.

18.
Mol Cancer Res ; 16(4): 682-695, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29453322

RESUMO

The mTOR signaling pathway is a central regulator of protein synthesis and cellular metabolism in response to the availability of energy, nutrients, oxygen, and growth factors. mTOR activation leads to phosphorylation of multiple downstream targets including the eukaryotic initiation factor 4E (eIF4E) binding proteins-1 and -2 (EIF4EBP1/4E-BP1 and EIF4EBP2/4E-BP2). These binding proteins inhibit protein synthesis, but are inactivated by mTOR to stimulate cell growth and metabolism. However, the role of these proteins in the context of aberrant activation of mTOR, which occurs frequently in cancers through loss of PTEN or mutational activation of the PI3K/AKT pathway, is unclear. Here, even under conditions of aberrant mTOR activation, hypoxia causes dephosphorylation of 4E-BP1/4E-BP2 and increases their association with eIF4E to suppress translation. This is essential for hypoxia tolerance as knockdown of 4E-BP1 and 4E-BP2 decreases proliferation under hypoxia and increases hypoxia-induced cell death. In addition, genetic deletion of 4E-BP1 and 4E-BP2 significantly accelerates all phases of cancer development in the context of PTEN loss-driven prostate cancer in mice despite potent PI3K/AKT and mTOR activation. However, even with a more rapid onset, tumors that establish in the absence of 4E-BP1 and 4E-BP2 have reduced levels of tumor hypoxia and show increased cell death within hypoxic tumor regions. Together, these data demonstrate that 4E-BP1 and 4E-BP2 act as essential metabolic breaks even in the context of aberrant mTOR activation and that they are essential for the creation of hypoxia-tolerant cells in prostate cancer. Mol Cancer Res; 16(4); 682-95. ©2018 AACR.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/genética , PTEN Fosfo-Hidrolase/genética , Fosfoproteínas/genética , Neoplasias da Próstata/patologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular , Hipóxia Celular , Linhagem Celular Tumoral , Fatores de Iniciação em Eucariotos/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Fosfoproteínas/metabolismo , Fosforilação , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Serina-Treonina Quinases TOR/metabolismo
19.
Sci Rep ; 7(1): 9746, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28851989

RESUMO

Tumor heterogeneity can be elucidated by mapping subregions of the lesion with differential imaging characteristics, called habitats. Dynamic Contrast Enhanced (DCE-)MRI can depict the tumor microenvironments by identifying areas with variable perfusion and vascular permeability, since individual tumor habitats vary in the rate and magnitude of the contrast uptake and washout. Of particular interest is identifying areas of hypoxia, characterized by inadequate perfusion and hyper-permeable vasculature. An automatic procedure for delineation of tumor habitats from DCE-MRI was developed as a two-part process involving: (1) statistical testing in order to determine the number of the underlying habitats; and (2) an unsupervised pattern recognition technique to recover the temporal contrast patterns and locations of the associated habitats. The technique is examined on simulated data and DCE-MRI, obtained from prostate and brain pre-clinical cancer models, as well as clinical data from sarcoma and prostate cancer patients. The procedure successfully identified habitats previously associated with well-perfused, hypoxic and/or necrotic tumor compartments. Given the association of tumor hypoxia with more aggressive tumor phenotypes, the obtained in vivo information could impact management of cancer patients considerably.


Assuntos
Neoplasias Encefálicas/patologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias da Próstata/patologia , Sarcoma/patologia , Microambiente Tumoral , Animais , Automação Laboratorial , Simulação por Computador , Modelos Animais de Doenças , Humanos , Masculino , Camundongos
20.
PLoS One ; 12(7): e0181654, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28759636

RESUMO

BACKGROUND: Malignant gliomas are highly invasive, difficult to treat, and account for 2% of cancer deaths worldwide. Glioblastoma Multiforme (GBM) comprises the most common and aggressive intracranial tumor. The study hypothesis is to investigate the modification of Photodynamic Therapy (PDT) efficacy by mild hypothermia leads to increased glioma cell kill while protecting normal neuronal structures. METHODS: Photosensitizer accumulation and PDT efficacy in vitro were quantified in various glioma cell lines, primary rat neurons, and astrocytes. In vivo studies were carried out in healthy brain and RG2 glioma of naïve Fischer rats. Hypothermia was induced at 1 hour pre- to 2 hours post-PDT, with ALA-PpIX accumulation and PDT treatments effects on tumor and normal brain PDT quantified using optical spectroscopy, histology, immunohistochemistry, MRI, and survival studies, respectively. FINDINGS: In vitro studies demonstrated significantly improved post-PDT survival in primary rat neuronal cells. Rat in vivo studies confirmed a neuroprotective effect to hypothermia following PpIX mediated PDT by T2 mapping at day 10, reflecting edema/inflammation volume reduction. Mild hypothermia increased PpIX fluorescence in tumors five-fold, and the median post-PDT rat survival time (8.5 days normothermia; 14 days hypothermia). Histology and immunohistochemistry show close to complete cellular protection in normal brain structures under hypothermia. CONCLUSIONS: The benefits of hypothermia on both normal neuronal tissue as well as increased PpIX fluorescence and RG2 induced rat survival strongly suggest a role for hypothermia in photonics-based surgical techniques, and that a hypothermic intervention could lead to considerable patient outcome improvements.


Assuntos
Ácido Aminolevulínico/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Hipotermia Induzida/métodos , Fotoquimioterapia/métodos , Protoporfirinas/farmacologia , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Neurônios/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Ratos , Ratos Endogâmicos F344 , Ratos Wistar , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA