Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Blood Adv ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38843379

RESUMO

Gene therapy for severe hemophilia A employs an adeno-associated virus (AAV) vector and liver-specific promoters that depend on healthy hepatocyte function to achieve safe and long-lasting increases in FVIII activity. Thus, hepatocyte health is an essential aspect of safe and successful gene therapy. Many people living with hemophilia A have current or past chronic hepatitis C virus infection, metabolic dysfunction-associated steatosis or steatohepatitis, or other conditions that may compromise the efficacy and safety of AAV-mediated gene therapy. In addition, gene therapy may induce an immune response to transduced hepatocytes, leading to liver inflammation and reduced FVIII activity. The immune response can be treated with immunosuppression, but close monitoring of liver function tests and factor levels is necessary. The long-term risk of hepatocellular carcinoma associated with gene therapy is unknown. Routine screening by imaging for hepatocellular carcinoma, preferable every 6 months, is essential in patients at high risk and recommended in all recipients of hemophilia A gene therapy. This paper describes our current understanding of the biologic underpinnings of how liver health affects hemophilia A gene therapy, and provides practical clinical guidance for assessing, monitoring, and managing liver health both before and after gene therapy.

2.
Blood ; 143(23): 2373-2385, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38452208

RESUMO

ABSTRACT: Gene therapy using adeno-associated virus (AAV) vectors is a promising approach for the treatment of monogenic disorders. Long-term multiyear transgene expression has been demonstrated in animal models and clinical studies. Nevertheless, uncertainties remain concerning the nature of AAV vector persistence and whether there is a potential for genotoxicity. Here, we describe the mechanisms of AAV vector persistence in the liver of a severe hemophilia A dog model (male = 4, hemizygous; and female = 4, homozygous), more than a decade after portal vein delivery. The predominant vector form was nonintegrated episomal structures with levels correlating with long-term transgene expression. Random integration was seen in all samples (median frequency, 9.3e-4 sites per cell), with small numbers of nonrandom common integration sites associated with open chromatin. No full-length integrated vectors were found, supporting predominant episomal vector-mediated long-term transgene expression. Despite integration, this was not associated with oncogene upregulation or histopathological evidence of tumorigenesis. These findings support the long-term safety of this therapeutic modality.


Assuntos
Dependovirus , Fator VIII , Terapia Genética , Vetores Genéticos , Hemofilia A , Fígado , Animais , Cães , Dependovirus/genética , Hemofilia A/genética , Hemofilia A/terapia , Vetores Genéticos/genética , Fígado/metabolismo , Fígado/patologia , Masculino , Terapia Genética/métodos , Feminino , Fator VIII/genética , Técnicas de Transferência de Genes , Integração Viral , Transgenes , Modelos Animais de Doenças
3.
J Hepatol ; 80(2): 352-361, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37890721

RESUMO

Gene therapy has garnered increasing interest over recent decades. Several therapies employing gene transfer mechanisms have been developed, and, of these, adeno-associated virus (AAV) vectors have demonstrated viability for use with in vivo gene therapy. Several AAV-based therapeutics have received regulatory approval in the last few years including those for retinal disease, spinal muscular atrophy or aromatic L-amino acid decarboxylase deficiency. Lately, with the introduction of novel liver-directed AAV vector-based therapeutics for the treatment of haemophilia A and B, gene therapy has attracted significant attention in the hepatology community, with the liver increasingly recognised as a target for gene therapy. However, the introduction of foreign DNA into hepatocytes is associated with a risk of hepatic reactions, with raised ALT (alanine aminotransferase) and AST (aspartate aminotransferase) being - so far - the most commonly reported side effects. The complete mechanisms underlying the ALT flairs remain to be determined and the long-term risks associated with these new treatments is not yet known. The liver community is increasingly being asked to support liver-directed gene therapy to mitigate potential liver associated harm. In this review, we focus on AAV vector-based gene therapy, shedding light on this promising technique and its remarkable success in haemophilia, with a special focus on hepatic complications and their management in daily clinical practice.


Assuntos
Gastroenterologistas , Técnicas de Transferência de Genes , Humanos , Dependovirus/genética , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Fígado , Vetores Genéticos/genética
4.
Hum Gene Ther ; 35(1-2): 36-47, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38126359

RESUMO

Adeno-associated virus (AAV) vectors are used to deliver therapeutic transgenes, but host immune responses may interfere with transduction and transgene expression. We evaluated prophylactic corticosteroid treatment on AAV5-mediated expression in liver tissue. Wild-type C57BL/6 mice received 6 × 1013 vg/kg AAV5-HLP-hA1AT, an AAV5 vector carrying a human α1-antitrypsin (hA1AT) gene with a hepatocyte-specific promoter. Mice received 4 weeks of daily 2 mg/kg prednisolone or water starting day -1 or 0 before vector dosing. Mice that received prophylactic corticosteroids had significantly higher serum hA1AT protein than mice that did not, starting at 6 weeks and persisting to the study end at 12 weeks, potentially through a decrease in the number of low responders. RNAseq and proteomic analyses investigating mechanisms mediating the improvement of transgene expression found that prophylactic corticosteroid treatment upregulated the AAV5 coreceptor platelet-derived growth factor receptor alpha (PDGFRα) on hepatocytes and downregulated its competitive ligand PDGFα, thus increasing the uptake of AAV5 vectors. Evidently, prophylactic corticosteroid treatment also suppressed acute immune responses to AAV. Together, these mechanisms resulted in increased uptake and preservation of the transgene, allowing more vector genomes to be available to assemble into stable, full-length structures mediating long-term transgene expression. Prophylactic corticosteroids represent a potential actionable strategy to improve AAV5-mediated transgene expression and decrease intersubject variability.


Assuntos
Prednisolona , Proteômica , Humanos , Camundongos , Animais , Regulação para Cima , Camundongos Endogâmicos C57BL , Hepatócitos , Transgenes , Corticosteroides , Receptores do Fator de Crescimento Derivado de Plaquetas/genética , Imunidade Inata , Dependovirus/genética , Vetores Genéticos/genética
5.
J Thromb Haemost ; 22(5): 1263-1289, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38103734

RESUMO

Adeno-associated virus gene therapy has been the subject of intensive investigation for monogenic disease gene addition therapy for more than 25 years, yet few therapies have been approved by regulatory agencies. Most have not progressed beyond phase 1/2 due to toxicity, lack of efficacy, or both. The liver is a natural target for adeno-associated virus since most serotypes have a high degree of tropism for hepatocytes due to cell surface receptors for the virus and the unique liver sinusoidal geometry facilitating high volumes of blood contact with hepatocyte cell surfaces. Recessive monogenic diseases such as hemophilia represent promising targets since the defective proteins are often synthesized in the liver and secreted into the circulation, making them easy to measure, and many do not require precise regulation. Yet, despite initiation of many disease-specific clinical trials, therapeutic windows are often nonexistent, resulting in excess toxicity and insufficient efficacy. Iterative progress built on these attempts is best illustrated by hemophilia, with the first regulatory approvals for factor IX and factor VIII gene therapies eventually achieved 25 years after the first gene therapy studies in humans. Although successful gene transfer may result in the production of sufficient transgenic protein to modify the disease, many emerging questions on durability, predictability, reliability, and variability of response have not been answered. The underlying biology accounting for these heterogeneous responses and the interplay between host and virus is the subject of intense investigation and the subject of this review.


Assuntos
Dependovirus , Terapia Genética , Vetores Genéticos , Hemofilia A , Fígado , Humanos , Dependovirus/genética , Hemofilia A/terapia , Hemofilia A/genética , Terapia Genética/métodos , Fígado/metabolismo , Fígado/virologia , Animais , Fator VIII/genética , Fator VIII/metabolismo , Técnicas de Transferência de Genes
6.
Mol Ther ; 30(12): 3570-3586, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36348622

RESUMO

Recombinant adeno-associated virus (rAAV) vectors are often produced in HEK293 or Spodoptera frugiperda (Sf)-based cell lines. We compared expression profiles of "oversized" (∼5,000 bp) and "standard-sized" (4,600 bp) rAAV5-human α1-antitrypsin (rAAV5-hA1AT) vectors manufactured in HEK293 or Sf cells and investigated molecular mechanisms mediating expression decline. C57BL/6 mice received 6 × 1013 vg/kg of vector, and blood and liver samples were collected through week 57. For all vectors, peak expression (weeks 12-24) declined by 50% to week 57. For Sf- and HEK293-produced oversized vectors, serum hA1AT was initially comparable, but in weeks 12-57, Sf vectors provided significantly higher expression. For HEK293 oversized vectors, liver genomes decreased continuously through week 57 and significantly correlated with A1AT protein. In RNA-sequencing analysis, HEK293 vector-treated mice had significantly higher inflammatory responses in liver at 12 weeks compared with Sf vector- and vehicle-treated mice. Thus, HEK293 vector genome loss led to decreased transgene protein. For Sf-produced vectors, genomes did not decrease from peak expression. Instead, vector genome accessibility significantly decreased from peak to week 57 and correlated with transgene RNA. Vector DNA interactions with active histone marks (H3K27ac/H3K4me3) were significantly reduced from peak to week 57, suggesting that epigenetic regulation impacts transgene expression of Sf-produced vectors.


Assuntos
Epigênese Genética , Insetos , Humanos , Camundongos , Animais , Células HEK293 , Camundongos Endogâmicos C57BL , RNA , Mamíferos
7.
Mol Ther Methods Clin Dev ; 26: 61-71, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-35782594

RESUMO

Recombinant adeno-associated virus (AAV) is an effective platform for therapeutic gene transfer; however, tissue-tropism differences between species are a challenge for successful translation of preclinical results to humans. We evaluated the use of in vitro primary hepatocyte cultures to predict in vivo liver-directed AAV expression in different species. We assessed whether in vitro AAV transduction assays in cultured primary hepatocytes from mice, nonhuman primates (NHPs), and humans could model in vivo liver-directed AAV expression of valoctocogene roxaparvovec (AAV5-hFVIII-SQ), an experimental gene therapy for hemophilia A with a hepatocyte-selective promoter. Relative levels of DNA and RNA in hepatocytes grown in vitro correlated with in vivo liver transduction across species. Expression in NHP hepatocytes more closely reflected expression in human hepatocytes than in mouse hepatocytes. We used this hepatocyte culture model to assess transduction efficacy of a novel liver-directed AAV capsid across species and identified which of 3 different canine factor VIII vectors produced the most transgene expression. Results were confirmed in vivo. Further, we determined mechanisms mediating inhibition of AAV5-hFVIII-SQ expression by concomitant isotretinoin using primary human hepatocytes. These studies support using in vitro primary hepatocyte models to predict species translatability of liver-directed AAV gene therapy and improve mechanistic understanding of drug-drug interactions.

8.
Nat Med ; 28(4): 789-797, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35411075

RESUMO

Factor VIII gene transfer with a single intravenous infusion of valoctocogene roxaparvovec (AAV5-hFVIII-SQ) has demonstrated clinical benefits lasting 5 years to date in people with severe hemophilia A. Molecular mechanisms underlying sustained AAV5-hFVIII-SQ-derived FVIII expression have not been studied in humans. In a substudy of the phase 1/2 clinical trial ( NCT02576795 ), liver biopsy samples were collected 2.6-4.1 years after gene transfer from five participants. Primary objectives were to examine effects on liver histopathology, determine the transduction pattern and percentage of hepatocytes transduced with AAV5-hFVIII-SQ genomes, characterize and quantify episomal forms of vector DNA and quantify transgene expression (hFVIII-SQ RNA and hFVIII-SQ protein). Histopathology revealed no dysplasia, architectural distortion, fibrosis or chronic inflammation, and no endoplasmic reticulum stress was detected in hepatocytes expressing hFVIII-SQ protein. Hepatocytes stained positive for vector genomes, showing a trend for more cells transduced with higher doses. Molecular analysis demonstrated the presence of full-length, inverted terminal repeat-fused, circular episomal genomes, which are associated with long-term expression. Interindividual differences in transgene expression were noted despite similar successful transduction, possibly influenced by host-mediated post-transduction mechanisms of vector transcription, hFVIII-SQ protein translation and secretion. Overall, these results demonstrate persistent episomal vector structures following AAV5-hFVIII-SQ administration and begin to elucidate potential mechanisms mediating interindividual variability.


Assuntos
Dependovirus , Hemofilia A , Dependovirus/genética , Dependovirus/metabolismo , Fator VIII/genética , Fator VIII/uso terapêutico , Terapia Genética/métodos , Vetores Genéticos/genética , Hemofilia A/genética , Hemofilia A/terapia , Humanos , RNA Mensageiro , Transgenes/genética
9.
Mol Ther Methods Clin Dev ; 24: 142-153, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35036471

RESUMO

Valoctocogene roxaparvovec (AAV5-hFVIII-SQ) is an adeno-associated virus serotype 5 (AAV5)-based gene therapy vector containing a B-domain-deleted human coagulation factor VIII (hFVIII) gene controlled by a liver-selective promoter. AAV5-hFVIII-SQ is currently under clinical investigation as a treatment for severe hemophilia A. The full-length AAV5-hFVIII-SQ is >4.9 kb, which is over the optimal packaging limit of AAV5. Following administration, the vector must undergo a number of genome-processing, assembly, and repair steps to form full-length circularized episomes that mediate long-term FVIII expression in target tissues. To understand the processing kinetics of the oversized AAV5-hFVIII-SQ vector genome into circular episomes, we characterized the various molecular forms of the AAV5-hFVIII-SQ genome at multiple time points up to 6 months postdose in the liver of murine and non-human primate models. Full-length circular episomes were detected in liver tissue beginning 1 week postdosing. Over 6 months, quantities of circular episomes (in a predominantly head-to-tail configuration) increased, while DNA species lacking inverted terminal repeats were preferentially degraded. Levels of duplex, circular, full-length genomes significantly correlated with levels of hFVIII-SQ RNA transcripts in mice and non-human primates dosed with AAV5-hFVIII-SQ. Altogether, we show that formation of full-length circular episomes in the liver following AAV5-hFVIII-SQ transduction was associated with long-term FVIII expression.

10.
Mol Ther Methods Clin Dev ; 18: 620-630, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32775496

RESUMO

Adeno-associated virus 5 (AAV5)-human factor VIII-SQ (hFVIII-SQ; valoctocogene roxaparvovec) is an AAV-mediated product under evaluation for treatment of severe hemophilia A, which contains a B-domain-deleted hFVIII (hFVIII-SQ) transgene and a hybrid liver-specific promotor (HLP). To increase FVIII-SQ expression and reduce the vector dose required, a stronger promoter may be considered. However, because FVIII-SQ is a protein known to be difficult to fold and secrete, this could potentially induce endoplasmic reticulum (ER) stress. We evaluated the effect of two AAV5-hFVIII-SQ vectors with different liver-specific promoter strength (HLP << 100ATGB) on hepatic ER stress in mice. Five weeks after receiving vehicle or vector, the percentage of transduced hepatocytes and levels of liver hFVIII-SQ DNA and RNA increased dose dependently for both vectors. At lower doses, plasma hFVIII-SQ protein levels were higher for 100ATGB. This difference was attenuated at the highest dose. For 100ATGB, liver hFVIII-SQ protein accumulated dose dependently, with increased expression of ER stress markers at the highest dose, suggesting hepatocytes reached or exceeded their capacity to fold/secrete hFVIII-SQ. These data suggest that weaker promoters may require relatively higher doses to distribute expression load across a greater number of hepatocytes, whereas relatively stronger promoters may produce comparable levels of FVIII in fewer hepatocytes, with potential for ER stress.

11.
Mol Ther Methods Clin Dev ; 17: 13-20, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31890737

RESUMO

AAV5-hFVIII-SQ (valoctocogene roxaparvovec) is an adeno-associated virus (AAV)-mediated gene therapy vector containing a B-domain-deleted human factor VIII (hFVIII-SQ) transgene. In a phase 1/2 clinical study of AAV5-hFVIII-SQ for severe hemophilia A (FVIII < 1 IU/dL), participants received prednisolone to mitigate potential immune-mediated reactions to the gene therapy and demonstrated concomitant elevations in plasma FVIII levels, following a single administration of AAV5-hFVIII-SQ. To assess whether prednisolone is capable of directly modulating transgene expression or levels of circulating hepatic enzymes, C57BL/6 mice were given intravenous vehicle, 2 × 1013 vector genomes (vg)/kg AAV5-hFVIII-SQ, or 6 × 1013 vg/kg AAV5-hFVIII-SQ, followed by either daily oral prednisolone or water. Mice were euthanized 4 or 13 weeks after vector administration. Hepatic hFVIII-SQ DNA, RNA, and protein (immunostaining), plasma hFVIII-SQ protein and FVIII activity, aspartate aminotransferase (AST), and alanine aminotransferase (ALT) were measured. Liver hFVIII-SQ DNA, RNA, and plasma hFVIII-SQ protein and activity increased in a dose-dependent manner, with or without prednisolone. In summary, chronic prednisolone treatment in mice treated with AAV5-hFVIII-SQ did not modulate levels of liver hFVIII-SQ DNA, RNA, or the percentage and distribution of hFVIII-SQ-positive hepatocytes, nor did it regulate levels of plasma hFVIII-SQ protein or activity, or affect levels of plasma AST or ALT.

12.
Res Pract Thromb Haemost ; 3(2): 261-267, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31011710

RESUMO

BACKGROUND: Current treatment for severe hemophilia A is replacement of deficient factor. Although replacement therapy has improved life expectancy and quality, limitations include frequent infusions and high costs. Gene therapy is a potential alternative that utilizes an adeno-associated virus (AAV) vector containing the human genetic code for factor 8 (FVIII) that transduces the liver, enabling endogenous production of FVIII. Individuals with preexisting immunity to AAV serotypes may be less likely to benefit from this treatment. OBJECTIVES: This study measured seroprevalence of antibodies to AAV5 and 8 in an UK adult hemophilia A cohort. PATIENTS/METHODS: Patients were recruited from seven hemophilia centres in the UK. Citrated plasma samples from 100 patients were tested for preexisting activities against AAV5 and 8 using AAV transduction inhibition and total antibodies assays. RESULTS: Twent-one percent of patients had antibodies against AAV5 and 23% had antibodies against AAV8. Twenty-five percent and 38% of patients exhibited inhibitors of AAV5 or AAV8 cellular transduction respectively. Overall seroprevalence using either assay against AAV5 was 30% and against AAV8 was 40% in this cohort of hemophilia A patients. Seropositivity for both AAV5 and AAV8 was seen in 24% of participants. CONCLUSIONS: Screening for preexisting immunity may be important in identifying patients most likely to benefit from gene therapy. Clinical studies may be needed to evaluate the impact of preexisting immunity on the safety and efficacy of AAV mediated gene therapy.

13.
Mol Ther ; 26(2): 496-509, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29292164

RESUMO

Hemophilia A is an X-linked bleeding disorder caused by mutations in the gene encoding the factor VIII (FVIII) coagulation protein. Bleeding episodes in patients are reduced by prophylactic therapy or treated acutely using recombinant or plasma-derived FVIII. We have made an adeno-associated virus 5 vector containing a B domain-deleted (BDD) FVIII gene (BMN 270) with a liver-specific promoter. BMN 270 injected into hemophilic mice resulted in a dose-dependent expression of BDD FVIII protein and a corresponding correction of bleeding time and blood loss. At the highest dose tested, complete correction was achieved. Similar corrections in bleeding were observed at approximately the same plasma levels of FVIII protein produced either endogenously by BMN 270 or following exogenous administration of recombinant BDD FVIII. No evidence of liver dysfunction or hepatocyte endoplasmic reticulum stress was observed. Comparable doses in primates produced similar levels of circulating FVIII. These preclinical data support evaluation of BMN 270 in hemophilia A patients.


Assuntos
Fator VIII/genética , Terapia Genética , Hemofilia A/genética , Hemofilia A/terapia , Fragmentos de Peptídeos/genética , Animais , Apoptose/genética , Linhagem Celular , Dependovirus/genética , Modelos Animais de Doenças , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Expressão Gênica , Ordem dos Genes , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Hemofilia A/sangue , Fígado/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Fragmentos de Peptídeos/sangue , Primatas , Regiões Promotoras Genéticas
14.
J Clin Neurophysiol ; 29(1): 17-22, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22353981

RESUMO

This report describes how somatosensory-evoked potentials (SEPs) can detect acute medullary ischemia during cervical spine surgery. This article describes how asymmetric SEP intraoperative monitoring changes can localize medullary ischemia. Localization of change was validated by postoperative magnetic resonance imaging (MRI). A 68-year-old man underwent cervical posterior fusion with monitoring of bilateral SEPs of the upper and lower extremities. The SEPs disappeared during initial exposure of the C1 lamina. Changes were asymmetric in degree and duration. Brain MRI postoperatively demonstrated bilateral posterior inferior cerebellar artery (PICA) territory infarcts involving the left lateral medulla. This illustrates how intraoperative SEP monitoring can provide important information on the functional integrity of brainstem structures even during cervical surgery. A knowledge of medullary anatomy and vascular territories is necessary for interpreting SEP changes. In cervical surgery, SEPs incidentally monitor the integrity of the brainstem while monitoring the spinal cord. The asymmetry of SEP change seen here was consistent with medullary level impairment, where the vascular territory is lateralized in contrast to the symmetric anterior spinal artery territory.


Assuntos
Isquemia Encefálica/diagnóstico , Potenciais Somatossensoriais Evocados/fisiologia , Bulbo/irrigação sanguínea , Idoso , Isquemia Encefálica/fisiopatologia , Humanos , Masculino , Bulbo/fisiopatologia , Monitorização Intraoperatória , Processo Odontoide/lesões , Procedimentos Ortopédicos , Fraturas da Coluna Vertebral/cirurgia
15.
PLoS One ; 7(2): e30300, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22319564

RESUMO

Bezielle (BZL101) is a candidate oral drug that has shown promising efficacy and excellent safety in the early phase clinical trials for advanced breast cancer. Bezielle is an aqueous extract from the herb Scutellaria barbata. We have reported previously that Bezielle was selectively cytotoxic to cancer cells while sparing non-transformed cells. In tumor, but not in non-transformed cells, Bezielle induced generation of ROS and severe DNA damage followed by hyperactivation of PARP, depletion of the cellular ATP and NAD, and inhibition of glycolysis. We show here that tumor cells' mitochondria are the primary source of reactive oxygen species induced by Bezielle. Treatment with Bezielle induces progressively higher levels of mitochondrial superoxide as well as peroxide-type ROS. Inhibition of mitochondrial respiration prevents generation of both types of ROS and protects cells from Bezielle-induced death. In addition to glycolysis, Bezielle inhibits oxidative phosphorylation in tumor cells and depletes mitochondrial reserve capacity depriving cells of the ability to produce ATP. Tumor cells lacking functional mitochondria maintain glycolytic activity in presence of Bezielle thus supporting the hypothesis that mitochondria are the primary target of Bezielle. The metabolic effects of Bezielle towards normal cells are not significant, in agreement with the low levels of oxidative damage that Bezielle inflicts on them. Bezielle is therefore a drug that selectively targets cancer cell mitochondria, and is distinguished from other such drugs by its ability to induce not only inhibition of OXPHOS but also of glycolysis. This study provides a better understanding of the mechanism of Bezielle's cytotoxicity, and the basis of its selectivity towards cancer cells.


Assuntos
Glicólise/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Fosforilação Oxidativa/efeitos dos fármacos , Extratos Vegetais/farmacologia , Antineoplásicos , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Neoplasias/metabolismo , Neoplasias/patologia , Extratos Vegetais/uso terapêutico , Plantas Medicinais , Espécies Reativas de Oxigênio , Scutellaria
16.
Int J Cancer ; 129(12): 2945-57, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21509784

RESUMO

Bezielle is an orally administered aqueous extract of Scutellaria barbata for treatment of advanced and metastatic breast cancer. Phase I trials showed promising tolerability and efficacy. In our study, we used a combined proteomic-metabolomic approach to investigate the molecular pathways affected by Bezielle in ER-positive BT474 and ER-negative SKBR3 cell lines. In both, Bezielle inhibited cell proliferation, induced cell death and G2 cycle arrest by regulating the mediator proteins Jab1, p27(Kip1) and p21(Cip1) . In addition, it stimulated reactive oxygen species production, hyperactivation of PARP and inhibition of glycolysis. Bezielle's ability to induce oxidative stress was associated with the changes in expression of redox potential maintaining enzymes: glutathione- and thioredoxin-related proteins and peroxiredoxins. In regards to cell metabolism, decreased expression of α-enolase was associated with a reduction of de novo (13) C-lactate formation. Reduced Krebs cycle activity as evidenced by the reduced expression of α-ketoglutarate dehydrogenase and succinyl-CoA synthetase led to decreased intracellular succinate concentrations. By inhibiting glucose metabolism, cells reacted by lowering the expression of glucose transporters and resulting in decreased intracellular glucose concentration. Decreased expression of fatty acid synthase and reduced concentration of phosphocholine indicated considerable changes in phospholipid metabolism. Ultimately, by inhibiting the major energy-producing pathways, Bezielle caused depletion of ATP and NAD(H). Both cell lines were responsive, thus suggesting that Bezielle has the potential to be effective against ER-negative breast cancers. In conclusion, Bezielle's cytotoxicity toward cancer cells is primarily based on inhibition of metabolic pathways that are preferentially activated in tumor cells thus explaining its specificity for cancer cells.


Assuntos
Neoplasias da Mama/metabolismo , Metabolômica/métodos , Estresse Oxidativo , Extratos Vegetais/farmacologia , Proteômica/métodos , Neoplasias da Mama/tratamento farmacológico , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Glicólise/efeitos dos fármacos , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Scutellaria , Scutellaria baicalensis , Transdução de Sinais/efeitos dos fármacos
17.
Proc Natl Acad Sci U S A ; 107(43): 18616-21, 2010 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-20926749

RESUMO

Most patients who die from cancer succumb to treatment-refractory advanced metastatic progression. Although the early stages of tumor metastasis result in the formation of clinically silent micrometastatic foci, its later stages primarily reflect the progressive, organ-destructive growth of already advanced metastases. Early-stage metastasis is regulated by multiple factors within tumor cells as well as by the tumor microenvironment (TME). In contrast, the molecular determinants that control advanced metastatic progression remain essentially uncharacterized, precluding the development of therapies targeted against it. Here we show that the TME, functioning in part through platelet endothelial cell adhesion molecule 1 (PECAM-1), drives advanced metastatic progression and is essential for progression through its preterminal end stage. PECAM-1-KO and chimeric mice revealed that its metastasis-promoting effects are mediated specifically through vascular endothelial cell (VEC) PECAM-1. Anti-PECAM-1 mAb therapy suppresses both end-stage metastatic progression and tumor-induced cachexia in tumor-bearing mice. It reduces proliferation, but not angiogenesis or apoptosis, within advanced tumor metastases. Because its antimetastatic effects are mediated by binding to VEC rather than to tumor cells, anti-PECAM-1 mAb appears to act independently of tumor type. A modified 3D coculture assay showed that anti-PECAM-1 mAb inhibits the proliferation of PECAM-1-negative tumor cells by altering the concentrations of secreted factors. Our studies indicate that a complex interplay between elements of the TME and advanced tumor metastases directs end-stage metastatic progression. They also suggest that some therapeutic interventions may target late-stage metastases specifically. mAb-based targeting of PECAM-1 represents a TME-targeted therapeutic approach that suppresses the end stages of metastatic progression, until now a refractory clinical entity.


Assuntos
Neoplasias Experimentais/secundário , Molécula-1 de Adesão Celular Endotelial a Plaquetas/fisiologia , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/farmacologia , Apoptose , Transplante de Medula Óssea , Caquexia/terapia , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Células Endoteliais/fisiologia , Feminino , Humanos , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/terapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Camundongos Transgênicos , Neoplasias Experimentais/irrigação sanguínea , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Neovascularização Patológica , Comunicação Parácrina , Fenótipo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/imunologia
18.
BMC Cell Biol ; 11: 23, 2010 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-20374651

RESUMO

BACKGROUND: The pro-apoptotic protein CC3/TIP30 has an unusual cellular function as an inhibitor of nucleocytoplasmic transport. This function is likely to be activated under conditions of stress. A number of studies support the notion that CC3 acts as a tumor and metastasis suppressor in various types of cancer. The yeast homolog of CC3 is likely to be involved in responses to DNA damage. Here we examined the potential role of CC3 in regulation of cellular responses to genotoxic stress. RESULTS: We found that forced expression of CC3 in CC3-negative cells strongly delays the repair of UV-induced DNA damage. Exogenously introduced CC3 negatively affects expression levels of DDB2/XPE and p21CIP1, and inhibits induction of c-FOS after UV exposure. In addition, exogenous CC3 prevents the nuclear accumulation of P21CIP in response to UV. These changes in the levels/localization of relevant proteins resulting from the enforced expression of CC3 are likely to contribute to the observed delay in DNA damage repair. Silencing of CC3 in CC3-positive cells has a modest delaying effect on repair of the UV induced damage, but has a much more significant negative affect on the translesion DNA synthesis after UV exposure. This could be related to the higher expression levels and increased nuclear localization of p21CIP1 in cells where expression of CC3 is silenced. Expression of CC3 also inhibits repair of oxidative DNA damage and leads to a decrease in levels of nucleoredoxin, that could contribute to the reduced viability of CC3 expressing cells after oxidative insult. CONCLUSIONS: Manipulation of the cellular levels of CC3 alters expression levels and/or subcellular localization of proteins that exhibit nucleocytoplasmic shuttling. This results in altered responses to genotoxic stress and adversely affects DNA damage repair by affecting the recruitment of adequate amounts of required proteins to proper cellular compartments. Excess of cellular CC3 has a significant negative effect on DNA repair after UV and oxidant exposure, while silencing of endogenous CC3 slightly delays repair of UV-induced damage.


Assuntos
Acetiltransferases/metabolismo , Reparo do DNA , Fatores de Transcrição/metabolismo , Sobrevivência Celular , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dano ao DNA/efeitos da radiação , Humanos , Proteínas Nucleares/metabolismo , Estresse Oxidativo , Oxirredutases/metabolismo , Dímeros de Pirimidina/metabolismo , Raios Ultravioleta
19.
Int J Cancer ; 126(10): 2490-6, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19662653

RESUMO

The inhibitor of basic helix-loop-helix transcription factors, Id-1, is an important gene whose expression increases during prostate cancer progression and that upregulates proliferation, migration and invasion. We used microarray analysis to identify the downstream genes whose transcriptional expression is modulated by Id-1 protein. We compared gene expression in control LNCaP cells and Id-1-transduced LNCaP cells, which become significantly more aggressive after Id-1 overexpression, thus mimicking the high levels of Id-1 detected in metastatic cell lines. We used the Affy HTA U133A Expression Arrays with 45,000 probe sets representing more than 39,000 transcripts. We found that one of the most significantly downregulated genes on Id-1 expression was kallikrein 3 [also called prostate specific antigen (PSA)], the most commonly used biomarker of prostate cancer. Here, we show that the reduction in PSA mRNA and protein expression associated with high-grade prostate cancers, which generally express high levels of Id-1, could be the consequence of Id-1 overexpression.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma/metabolismo , Proteína 1 Inibidora de Diferenciação/metabolismo , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/metabolismo , Western Blotting , Carcinoma/imunologia , Linhagem Celular Tumoral , Progressão da Doença , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Sequências Hélice-Alça-Hélice/efeitos dos fármacos , Humanos , Proteína 1 Inibidora de Diferenciação/farmacologia , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Antígeno Prostático Específico/efeitos dos fármacos , Neoplasias da Próstata/imunologia , RNA Interferente Pequeno/metabolismo , Regulação para Cima
20.
Int J Cancer ; 127(5): 1209-19, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20027631

RESUMO

Hormonal, targeted and chemotherapeutic strategies largely depend on the expression of their cognate receptors and are often accompanied by intolerable toxicities. Effective and less toxic therapies for estrogen receptor negative (ER-) breast cancers are urgently needed. Here, we present the potential molecular mechanisms mediating the selective pro-apoptotic effect induced by BN107 and its principle terpene, oleanolic acid (OA), on ER- breast cancer cells. A panel of breast cancer cell lines was examined and the most significant cytotoxic effect was observed in ER- breast lines. Apoptosis was the major cellular pathway mediating the cytotoxicity of BN107. We demonstrated that sensitivity to BN107 was correlated to the status of ERalpha. Specifically, the presence of functional ERalpha protected cells from BN107-induced apoptosis and absence of ERalpha increased the sensitivity. BN107, an extract rich in OA derivatives, caused rapid alterations in cholesterol homeostasis, presumably by depleting cholesterol in lipid rafts (LRs), which subsequently interfered with signaling mediated by LRs. We showed that BN107 or OA treatment in ER- breast cancer cells resulted in rapid and specific inhibition of LR-mediated survival signaling, namely mTORC1 and mTORC2 activities, by decreasing the levels of the mTOR/FRAP1, RAPTOR and RICTOR. Cotreatment with cholesterol abolished the proapoptotic effect and restored the disrupted mTOR activities. This is the first report demonstrating possible concomitant inhibition of both mTORC1 and mTORC2 activities by modulating the levels of protein constituents present in these signaling complexes, and thus provides a basis for future development of OA-based mTOR inhibitors.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Gleditsia/química , Ácido Oleanólico/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Western Blotting , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Colesterol/metabolismo , Citocromos c/metabolismo , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio/antagonistas & inibidores , Receptor beta de Estrogênio/genética , Feminino , Imunofluorescência , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Microdomínios da Membrana/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Complexos Multiproteicos , Extratos Vegetais/farmacologia , Proteínas , Serina-Treonina Quinases TOR , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA