Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Transl Res ; 251: 2-13, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35724933

RESUMO

Calcium accumulation in atherosclerotic plaques predicts cardiovascular mortality, but the mechanisms responsible for plaque calcification and how calcification impacts plaque stability remain debated. Tissue-nonspecific alkaline phosphatase (TNAP) recently emerged as a promising therapeutic target to block cardiovascular calcification. In this study, we sought to investigate the effect of the recently developed TNAP inhibitor SBI-425 on atherosclerosis plaque calcification and progression. TNAP levels were investigated in ApoE-deficient mice fed a high-fat diet from 10 weeks of age and in plaques from the human ECLAGEN biocollection (101 calcified and 14 non-calcified carotid plaques). TNAP was inhibited in mice using SBI-425 administered from 10 to 25 weeks of age, and in human vascular smooth muscle cells (VSMCs) with MLS-0038949. Plaque calcification was imaged in vivo with 18F-NaF-PET/CT, ex vivo with osteosense, and in vitro with alizarin red. Bone architecture was determined with µCT. TNAP activation preceded and predicted calcification in human and mouse plaques, and TNAP inhibition prevented calcification in human VSMCs and in ApoE-deficient mice. More unexpectedly, TNAP inhibition reduced the blood levels of cholesterol and triglycerides, and protected mice from atherosclerosis, without impacting the skeletal architecture. Metabolomics analysis of liver extracts identified phosphocholine as a substrate of liver TNAP, who's decreased dephosphorylation upon TNAP inhibition likely reduced the release of cholesterol and triglycerides into the blood. Systemic inhibition of TNAP protects from atherosclerosis, by ameliorating dyslipidemia, and preventing plaque calcification.


Assuntos
Aterosclerose , Calcinose , Dislipidemias , Placa Aterosclerótica , Camundongos , Humanos , Animais , Fosfatase Alcalina , Músculo Liso Vascular , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Aterosclerose/etiologia , Aterosclerose/prevenção & controle , Apolipoproteínas E , Triglicerídeos
2.
Cardiovasc Res ; 118(1): 84-96, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33070177

RESUMO

Cardiovascular calcification (CVC) is associated with increased morbidity and mortality. It develops in several diseases and locations, such as in the tunica intima in atherosclerosis plaques, in the tunica media in type 2 diabetes and chronic kidney disease, and in aortic valves. In spite of the wide occurrence of CVC and its detrimental effects on cardiovascular diseases (CVD), no treatment is yet available. Most of CVC involve mechanisms similar to those occurring during endochondral and/or intramembranous ossification. Logically, since tissue-nonspecific alkaline phosphatase (TNAP) is the key-enzyme responsible for skeletal/dental mineralization, it is a promising target to limit CVC. Tools have recently been developed to inhibit its activity and preclinical studies conducted in animal models of vascular calcification already provided promising results. Nevertheless, as its name indicates, TNAP is ubiquitous and recent data indicate that it dephosphorylates different substrates in vivo to participate in other important physiological functions besides mineralization. For instance, TNAP is involved in the metabolism of pyridoxal phosphate and the production of neurotransmitters. TNAP has also been described as an anti-inflammatory enzyme able to dephosphorylate adenosine nucleotides and lipopolysaccharide. A better understanding of the full spectrum of TNAP's functions is needed to better characterize the effects of TNAP inhibition in diseases associated with CVC. In this review, after a brief description of the different types of CVC, we describe the newly uncovered additional functions of TNAP and discuss the expected consequences of its systemic inhibition in vivo.


Assuntos
Fosfatase Alcalina/metabolismo , Artérias/metabolismo , Calcificação Vascular/metabolismo , Fosfatase Alcalina/antagonistas & inibidores , Animais , Artérias/efeitos dos fármacos , Artérias/patologia , Artérias/fisiopatologia , Fármacos Cardiovasculares/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Humanos , Fosforilação , Transdução de Sinais , Especificidade por Substrato , Calcificação Vascular/tratamento farmacológico , Calcificação Vascular/patologia , Calcificação Vascular/fisiopatologia
3.
J Neurochem ; 160(3): 305-324, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34905223

RESUMO

Extracellular adenosine plays prominent roles in the brain in both physiological and pathological conditions. Adenosine can be generated following the degradation of extracellular nucleotides by various types of ectonucleotidases. Several ectonucleotidases are present in the brain parenchyma: ecto-nucleotide triphosphate diphosphohydrolases 1 and 3 (NTPDase 1 and 3), ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP 1), ecto-5'-nucleotidase (eN), and tissue non-specific alkaline phosphatase (TNAP, whose function in the brain has received little attention). Here we examined, in a living brain preparation, the role of these ectonucleotidases in generating extracellular adenosine. We recorded local field potentials evoked by electrical stimulation of the lateral olfactory tract in the mouse piriform cortex in vitro. Variations in adenosine level were evaluated by measuring changes in presynaptic inhibition generated by adenosine A1 receptors (A1Rs) activation. A1R-mediated presynaptic inhibition was present endogenously and was enhanced by bath-applied AMP and ATP. We hypothesized that inhibiting ectonucleotidases would reduce extracellular adenosine concentration, which would result in a weakening of presynaptic inhibition. However, inhibiting TNAP had no effect in controlling endogenous adenosine action and no effect on presynaptic inhibition induced by bath-applied AMP. Furthermore, contrary to our expectation, inhibiting TNAP reinforced, rather than reduced, presynaptic inhibition induced by bath-applied ATP. Similarly, inhibition of NTPDase 1 and 3, NPP1, and eN induced stronger, rather than weaker, presynaptic inhibition, both in endogenous condition and with bath-applied ATP and AMP. Consequently, attempts to suppress the functions of extracellular adenosine by blocking its extracellular synthesis in living brain tissue could have functional impacts opposite to those anticipated.


Assuntos
Córtex Cerebral/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Nucleotidases/antagonistas & inibidores , Transmissão Sináptica/efeitos dos fármacos , 5'-Nucleotidase/antagonistas & inibidores , Adenosina/metabolismo , Agonistas do Receptor A1 de Adenosina/farmacologia , Monofosfato de Adenosina/farmacologia , Trifosfato de Adenosina/farmacologia , Fosfatase Alcalina/antagonistas & inibidores , Animais , Estimulação Elétrica , Potenciais Evocados/efeitos dos fármacos , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Bulbo Olfatório/efeitos dos fármacos , Receptor A1 de Adenosina/efeitos dos fármacos , Receptor A1 de Adenosina/metabolismo
4.
PLoS One ; 15(4): e0226858, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32267859

RESUMO

High-power microwaves are used to inhibit electronics of threatening military or civilian vehicles. This work aims to assess health hazards of high-power microwaves and helps to define hazard threshold levels of modulated radiofrequency exposures such as those emitted by the first generations of mobile phones. Rats were exposed to the highest possible field levels, under single acute or repetitive exposures for eight weeks. Intense microwave electric fields at 1 MV m-1 of nanoseconds duration were applied from two sources at different carrier frequencies of 10 and 3.7 GHz. The repetition rate was 100 pps, and the duration of train pulses lasted from 10 s to twice 8 min. The effects on the central nervous system were evaluated, by labelling brain inflammation marker GFAP and by performing different behavioural tests: rotarod, T-maze, beam-walking, open-field, and avoidance test. Long-time survival was measured in animals repeatedly exposed, and anatomopathological analysis was performed on animals sacrificed at two years of life or earlier in case of precocious death. Control groups were sham exposed. Few effects were observed on behaviour. With acute exposure, an avoidance reflex was shown at very high thermal level (22 W kg-1); GFAP was increased some days after exposure. Most importantly, with repeated exposures, survival time was 4-months shorter in the exposed group, with eleven animals exhibiting a large sub-cutaneous tumour, compared to two in the sham group. A residual X-ray exposure was also present in the beam (0.8 Gy), which is probably not a bias for the observed result. High power microwaves below thermal level in average, can increase cancer prevalence and decrease survival time in rats, without clear effects on behaviour. The parameters of this effect need to be further explored, and a more precise dosimetry to be performed.


Assuntos
Carcinogênese/efeitos da radiação , Micro-Ondas/efeitos adversos , Neoplasias Experimentais/epidemiologia , Animais , Aprendizagem da Esquiva/efeitos da radiação , Comportamento Animal/efeitos da radiação , Telefone Celular , Incidência , Masculino , Neoplasias Experimentais/etiologia , Radiometria , Ratos , Ratos Sprague-Dawley , Análise de Sobrevida , Fatores de Tempo
5.
Physiol Rep ; 7(3): e13992, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30740934

RESUMO

We examined the effect of adenosine and of adenosine A1 receptor blockage on short-term synaptic plasticity in slices of adult mouse anterior piriform cortex maintained in vitro in an in vivo-like ACSF. Extracellular recording of postsynaptic responses was performed in layer 1a while repeated electrical stimulation (5-pulse-trains, frequency between 3.125 and 100 Hz) was applied to the lateral olfactory tract. Our stimulation protocol was aimed at covering the frequency range of oscillatory activities observed in the olfactory bulb in vivo. In control condition, postsynaptic response amplitude showed a large enhancement for stimulation frequencies in the beta and gamma frequency range. A phenomenological model of short-term synaptic plasticity fitted to the data suggests that this frequency-dependent enhancement can be explained by the interplay between a short-term facilitation mechanism and two short-term depression mechanisms, with fast and slow recovery time constants. In the presence of adenosine, response amplitude evoked by low-frequency stimulation decreased in a dose-dependent manner (IC50  = 70 µmol/L). Yet short-term plasticity became more dominated by facilitation and less influenced by depression. Both changes compensated for the initial decrease in response amplitude in a way that depended on stimulation frequency: compensation was strongest at high frequency, up to restoring response amplitudes to values similar to those measured in control condition. The model suggested that the main effects of adenosine were to decrease neurotransmitter release probability and to attenuate short-term depression mechanisms. Overall, these results suggest that adenosine does not merely inhibit neuronal activity but acts in a more subtle, frequency-dependent manner.


Assuntos
Agonistas do Receptor A1 de Adenosina/farmacologia , Adenosina/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Córtex Piriforme/efeitos dos fármacos , Receptor A1 de Adenosina/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Animais , Estimulação Elétrica , Feminino , Técnicas In Vitro , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Córtex Piriforme/fisiologia , Receptor A1 de Adenosina/metabolismo , Fatores de Tempo
6.
Am J Primatol ; 81(2): e22956, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30779205

RESUMO

Microglia are cells that protect brain tissue from invading agents and toxic substances, first by releasing pro-inflammatory cytokines, and thereafter by clearing tissue by phagocytosis. Microglia express ferritin, a protein with ferroxidase activity capable of storing iron, a metal that accumulates in brain during aging. Increasing evidence suggests that ferritin plays an important role in inflammation. However, it is not known if ferritin/iron content can be related to the activation state of microglia. To this end, we aimed to delineate the role of ferritin in microglia activation in a non-human primate model. We analyzed brains of male marmosets and observed an increased density of ferritin+ microglia with an activated phenotype in hippocampus and cortex of old marmosets (mean age 11.25 ± 0.70 years) compared to younger subjects. This was accompanied by an increased number of dystrophic microglia in old marmosets. However, in aged subjects (mean age 16.83 ± 2.59 years) the number of ferritin+ microglia was decreased compared to old ones. Meanwhile, the content of iron in brain tissue and cells with oxidized RNA increased during aging in all hippocampal and cortical regions analyzed. Abundant amoeboid microglia were commonly observed surrounding neurons with oxidized RNA. Notably, amoeboid microglia were arginase1+ and IL-10+, indicative of a M2 phenotype. Some of those M2 cells also presented RNA oxidation and a dystrophic phenotype. Therefore, our data suggest that ferritin confers protection to microglia in adult and old marmosets, while in aged subjects the decline in ferritin and the increased amount of iron in brain tissue may be related to the increased number of cells with oxidized RNA, perhaps precluding the onset of neurodegeneration.


Assuntos
Envelhecimento , Callithrix/fisiologia , Ferritinas/metabolismo , Ferro/metabolismo , Microglia/patologia , Animais , Córtex Cerebral/patologia , Hipocampo/citologia , Hipocampo/patologia , Masculino , Microglia/química , RNA/química
7.
J Neurochem ; 140(6): 919-940, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28072448

RESUMO

Tissue non-specific alkaline phosphatase (TNAP) is a key player of bone mineralization and TNAP gene (ALPL) mutations in human are responsible for hypophosphatasia (HPP), a rare heritable disease affecting the mineralization of bones and teeth. Moreover, TNAP is also expressed by brain cells and the severe forms of HPP are associated with neurological disorders, including epilepsy and brain morphological anomalies. However, TNAP's role in the nervous system remains poorly understood. To investigate its neuronal functions, we aimed to identify without any a priori the metabolites regulated by TNAP in the nervous tissue. For this purpose we used 1 H- and 31 P NMR to analyze the brain metabolome of Alpl (Akp2) mice null for TNAP function, a well-described model of infantile HPP. Among 39 metabolites identified in brain extracts of 1-week-old animals, eight displayed significantly different concentration in Akp2-/- compared to Akp2+/+ and Akp2+/- mice: cystathionine, adenosine, GABA, methionine, histidine, 3-methylhistidine, N-acetylaspartate (NAA), and N-acetyl-aspartyl-glutamate, with cystathionine and adenosine levels displaying the strongest alteration. These metabolites identify several biochemical processes that directly or indirectly involve TNAP function, in particular through the regulation of ecto-nucleotide levels and of pyridoxal phosphate-dependent enzymes. Some of these metabolites are involved in neurotransmission (GABA, adenosine), in myelin synthesis (NAA, NAAG), and in the methionine cycle and transsulfuration pathway (cystathionine, methionine). Their disturbances may contribute to the neurodevelopmental and neurological phenotype of HPP.


Assuntos
Fosfatase Alcalina/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Hipofosfatasia/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Fosfatase Alcalina/deficiência , Animais , Feminino , Hipofosfatasia/genética , Masculino , Camundongos , Camundongos Knockout
8.
Subcell Biochem ; 76: 239-81, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26219715

RESUMO

Tissue non-specific alkaline phosphatase (TNAP) may be involved in the synthesis of GABA and adenosine, which are the main inhibitory neurotransmitters in cortex. We explored this putative TNAP function through electrophysiological recording (local field potential ) in slices of mouse somatosensory cortex maintained in vitro. We used tetramisole, a well documented TNAP inhibitor, to block TNAP activity. We expected that inhibiting TNAP with tetramisole would lead to an increase of neuronal response amplitude, owing to a diminished availability of GABA and/or adenosine. Instead, we found that tetramisole reduced neuronal response amplitude in a dose-dependent manner. Tetramisole also decreased axonal conduction velocity. Levamisole had identical effects. Several control experiments demonstrated that these actions of tetramisole were independent from this compound acting on TNAP. In particular, tetramisole effects were not stereo-specific and they were not mimicked by another inhibitor of TNAP, MLS-0038949. The decrease of axonal conduction velocity and preliminary intracellular data suggest that tetramisole blocks voltage-dependent sodium channels. Our results imply that levamisole or tetramisole should not be used with the sole purpose of inhibiting TNAP in living excitable cells as it will also block all processes that are activity-dependent. Our data and a review of the literature indicate that tetramisole may have at least four different targets in the nervous system. We discuss these results with respect to the neurological side effects that were observed when levamisole and tetramisole were used for medical purposes, and that may recur nowadays due to the recent use of levamisole and tetramisole as cocaine adulterants.


Assuntos
Fosfatase Alcalina/antagonistas & inibidores , Córtex Cerebral/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Levamisol/farmacologia , Neurônios/efeitos dos fármacos , Tetramizol/farmacologia , Fosfatase Alcalina/metabolismo , Animais , Córtex Cerebral/metabolismo , Relação Dose-Resposta a Droga , Feminino , Camundongos , Neurônios/fisiologia , Transmissão Sináptica/efeitos dos fármacos
9.
Phys Med Biol ; 54(21): 6711-24, 2009 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-19841517

RESUMO

To analyze the effects of the microbeam width (25, 50 and 75 microm) on the survival of 9L gliosarcoma tumor-bearing rats and on toxicity in normal tissues in normal rats after microbeam radiation therapy (MRT), 9L gliosarcomas implanted in rat brains, as well as in normal rat brains, were irradiated in the MRT mode. Three configurations (MRT25, MRT50, MRT75), each using two orthogonally intersecting arrays of either 25, 50 or 75 microm wide microbeams, all spaced 211 microm on center, were tested. For each configuration, peak entrance doses of 860, 480 and 320 Gy, respectively, were calculated to produce an identical valley dose of 18 Gy per individual array at the center of the tumor. Two, 7 and 14 days after radiation treatment, 42 rats were killed to evaluate histopathologically the extent of tumor necrosis, and the presence of proliferating tumors cells and tumor vessels. The median survival times of the normal rats were 4.5, 68 and 48 days for MRT25, 50 and 75, respectively. The combination of the highest entrance doses (860 Gy per array) with 25 microm wide beams (MRT25) resulted in a cumulative valley dose of 36 Gy and was excessively toxic, as it led to early death of all normal rats and of approximately 50% of tumor-bearing rats. The short survival times, particularly of rats in the MRT25 group, restricted adequate observance of the therapeutic effect of the method on tumor-bearing rats. However, microbeams of 50 microm width led to the best median survival time after 9L gliosarcoma MRT treatment and appeared as the better compromise between tumor control and normal brain toxicity compared with 75 microm or 25 microm widths when used with a 211 microm on-center distance. Despite very high radiation doses, the tumors were not sterilized; viable proliferating tumor cells remained present at the tumor margin. This study shows that microbeam width and peak entrance doses strongly influence tumor responses and normal brain toxicity, even if valley doses are kept constant in all groups. The use of 50 microm wide microbeams combined with moderate peak doses resulted in a higher therapeutic ratio.


Assuntos
Neoplasias Encefálicas/radioterapia , Radioterapia/métodos , Síncrotrons , Animais , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Relação Dose-Resposta à Radiação , Gliossarcoma/radioterapia , Masculino , Método de Monte Carlo , Necrose , Transplante de Neoplasias , Ratos , Ratos Endogâmicos F344
10.
J Cereb Blood Flow Metab ; 27(2): 293-303, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16736048

RESUMO

We studied normal and tumorous three-dimensional (3D) microvascular networks in primate and rat brain. Tissues were prepared following a new preparation technique intended for high-resolution synchrotron tomography of microvascular networks. The resulting 3D images with a spatial resolution of less than the minimum capillary diameter permit a complete description of the entire vascular network for volumes as large as tens of cubic millimeters. The structural properties of the vascular networks were investigated by several multiscale methods such as fractal and power-spectrum analysis. These investigations gave a new coherent picture of normal and pathological complex vascular structures. They showed that normal cortical vascular networks have scale-invariant fractal properties on a small scale from 1.4 mum up to 40 to 65 mum. Above this threshold, vascular networks can be considered as homogeneous. Tumor vascular networks show similar characteristics, but the validity range of the fractal regime extend to much larger spatial dimensions. These 3D results shed new light on previous two dimensional analyses giving for the first time a direct measurement of vascular modules associated with vessel-tissue surface exchange.


Assuntos
Neoplasias Encefálicas/irrigação sanguínea , Animais , Neoplasias Encefálicas/patologia , Callithrix , Linhagem Celular Tumoral , Meios de Contraste , Interpretação Estatística de Dados , Fractais , Processamento de Imagem Assistida por Computador , Masculino , Microcirculação , Necrose , Transplante de Neoplasias , Ratos , Ratos Endogâmicos F344 , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA