Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Neurol ; 29(8): 2398-2411, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35460302

RESUMO

BACKGROUND AND PURPOSE: Andersen-Tawil syndrome (ATS) is a skeletal muscle channelopathy caused by KCNJ2 mutations, characterized by a clinical triad of periodic paralysis, cardiac arrhythmias and dysmorphism. The muscle phenotype, particularly the atypical forms with prominent permanent weakness or predominantly painful symptoms, remains incompletely characterized. METHODS: A retrospective clinical, histological, electroneuromyography (ENMG) and genetic analysis of molecularly confirmed ATS patients, diagnosed and followed up at neuromuscular reference centers in France, was conducted. RESULTS: Thirty-five patients from 27 unrelated families carrying 17 different missense KCNJ2 mutations (four novel mutations) and a heterozygous KCNJ2 duplication are reported. The typical triad was observed in 42.9% of patients. Cardiac abnormalities were observed in 65.7%: 56.5% asymptomatic and 39.1% requiring antiarrhythmic drugs. 71.4% of patients exhibited dysmorphic features. Muscle symptoms were reported in 85.7%, amongst whom 13.3% had no cardiopathy and 33.3% no dysmorphic features. Periodic paralysis was present in 80% and was significantly more frequent in men. Common triggers were exercise, immobility and carbohydrate-rich diet. Ictal serum potassium concentrations were low in 53.6%. Of the 35 patients, 45.7% had permanent weakness affecting proximal muscles, which was mild and stable or slowly progressive over several decades. Four patients presented with exercise-induced pain and myalgia attacks. Diagnostic delay was 14.4 ± 9.5 years. ENMG long-exercise test performed in 25 patients (71.4%) showed in all a decremental response up to 40%. Muscle biopsy performed in 12 patients revealed tubular aggregates in six patients (associated in two of them with vacuolar lesions), dystrophic features in one patient and non-specific myopathic features in one patient; it was normal in four patients. DISCUSSION: Recognition of atypical features (exercise-induced pain or myalgia and permanent weakness) along with any of the elements of the triad should arouse suspicion. The ENMG long-exercise test has a high diagnostic yield and should be performed. Early diagnosis is of utmost importance to improve disease prognosis.


Assuntos
Síndrome de Andersen , Síndrome de Andersen/diagnóstico , Síndrome de Andersen/genética , Diagnóstico Tardio , Humanos , Mutação/genética , Mialgia , Paralisia , Estudos Retrospectivos
2.
J Vis Exp ; (124)2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28671658

RESUMO

Numerous studies have demonstrated the role of immune cells, in particular macrophages, in central nervous system (CNS) pathologies. There are two main macrophage populations in the CNS: (i) the microglia, which are the resident macrophages of the CNS and are derived from yolk sac progenitors during embryogenesis, and (ii) the monocyte-derived macrophages (MDM), which can infiltrate the CNS during disease and are derived from bone marrow progenitors. The roles of each macrophage subpopulation differ depending on the pathology being studied. Furthermore, there is no consensus on the histological markers or the distinguishing criteria used for these macrophage subpopulations. However, the analysis of the expression profiles of the CD11b and CD45 markers by flow cytometry allows us to distinguish the microglia (CD11b+CD45med) from the MDM (CD11b+CD45high). In this protocol, we show that the density gradient centrifugation and the flow cytometry analysis can be used to characterize these CNS macrophage subpopulations, and to study several markers of interest expressed by these cells as we recently published. Thus, this technique can further our understanding of the role of macrophages in mouse models of neurological diseases and can also be used to evaluate drug effects on these cells.


Assuntos
Sistema Nervoso Central/citologia , Citometria de Fluxo/métodos , Macrófagos/imunologia , Microglia/imunologia , Animais , Biomarcadores/análise , Antígeno CD11b/biossíntese , Sistema Nervoso Central/imunologia , Antígenos Comuns de Leucócito/biossíntese , Macrófagos/citologia , Camundongos , Microglia/citologia
3.
Brain ; 140(4): 967-980, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334918

RESUMO

One major challenge in multiple sclerosis is to understand the cellular and molecular mechanisms leading to disease severity progression. The recently demonstrated correlation between disease severity and remyelination emphasizes the importance of identifying factors leading to a favourable outcome. Why remyelination fails or succeeds in multiple sclerosis patients remains largely unknown, mainly because remyelination has never been studied within a humanized pathological context that would recapitulate major events in plaque formation such as infiltration of inflammatory cells. Therefore, we developed a new paradigm by grafting healthy donor or multiple sclerosis patient lymphocytes in the demyelinated lesion of nude mice spinal cord. We show that lymphocytes play a major role in remyelination whose efficacy is significantly decreased in mice grafted with multiple sclerosis lymphocytes compared to those grafted with healthy donors lymphocytes. Mechanistically, we demonstrated in vitro that lymphocyte-derived mediators influenced differentiation of oligodendrocyte precursor cells through a crosstalk with microglial cells. Among mice grafted with lymphocytes from different patients, we observed diverse remyelination patterns reproducing for the first time the heterogeneity observed in multiple sclerosis patients. Comparing lymphocyte secretory profile from patients exhibiting high and low remyelination ability, we identified novel molecules involved in oligodendrocyte precursor cell differentiation and validated CCL19 as a target to improve remyelination. Specifically, exogenous CCL19 abolished oligodendrocyte precursor cell differentiation observed in patients with high remyelination pattern. Multiple sclerosis lymphocytes exhibit intrinsic capacities to coordinate myelin repair and further investigation on patients with high remyelination capacities will provide new pro-regenerative strategies.


Assuntos
Imunidade Adaptativa/fisiologia , Doenças Desmielinizantes/imunologia , Bainha de Mielina/imunologia , Adolescente , Adulto , Idoso , Animais , Transplante de Células , Quimiocina CCL19/imunologia , Feminino , Humanos , Linfócitos/imunologia , Lisofosfatidilcolinas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Pessoa de Meia-Idade , Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Células-Tronco Neurais/imunologia , Oligodendroglia/imunologia , Oligodendroglia/patologia , Adulto Jovem
4.
Aging Cell ; 16(1): 27-38, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27723233

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease characterized by formation of amyloid-ß (Aß) plaques, activated microglia, and neuronal cell death leading to progressive dementia. Recent data indicate that microglia and monocyte-derived macrophages (MDM) are key players in the initiation and progression of AD, yet their respective roles remain to be clarified. As AD occurs mostly in the elderly and aging impairs myeloid functions, we addressed the inflammatory profile of microglia and MDM during aging in TgAPP/PS1 and TgAPP/PS1dE9, two transgenic AD mouse models, compared to WT littermates. We only found MDM infiltration in very aged mice. We determined that MDM highly expressed activation markers at basal state. In contrast, microglia exhibited an activated phenotype only with normal aging and Aß pathology. Our study showed that CD14 and CD36, two receptors involved in phagocytosis, were upregulated during Aß pathogenesis. Moreover, we observed, at the protein levels in AD models, higher production of pro-inflammatory mediators: IL-1ß, p40, iNOS, CCL-3, CCL-4, and CXCL-1. Taken together, our data indicate that microglia and MDM display distinct phenotypes in AD models and highlight the specific effects of normal aging vs Aß peptides on inflammatory processes that occur during the disease progression. These precise phenotypes of different subpopulations of myeloid cells in normal and pathologic conditions may allow the design of pertinent therapeutic strategy for AD.


Assuntos
Envelhecimento/patologia , Doença de Alzheimer/patologia , Inflamação/patologia , Macrófagos/patologia , Microglia/patologia , Monócitos/patologia , Placa Amiloide/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Antígenos CD36/metabolismo , Quimiocinas/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/patologia , Receptores de Lipopolissacarídeos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos , Células Mieloides/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fagocitose , Fenótipo
5.
Am J Hum Genet ; 99(3): 753-761, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27569547

RESUMO

The neuromuscular junction (NMJ) is one of the best-studied cholinergic synapses. Inherited defects of peripheral neurotransmission result in congenital myasthenic syndromes (CMSs), a clinically and genetically heterogeneous group of rare diseases with fluctuating fatigable muscle weakness as the clinical hallmark. Whole-exome sequencing and Sanger sequencing in six unrelated families identified compound heterozygous and homozygous mutations in SLC5A7 encoding the presynaptic sodium-dependent high-affinity choline transporter 1 (CHT), which is known to be mutated in one dominant form of distal motor neuronopathy (DHMN7A). We identified 11 recessive mutations in SLC5A7 that were associated with a spectrum of severe muscle weakness ranging from a lethal antenatal form of arthrogryposis and severe hypotonia to a neonatal form of CMS with episodic apnea and a favorable prognosis when well managed at the clinical level. As expected given the critical role of CHT for multisystemic cholinergic neurotransmission, autonomic dysfunctions were reported in the antenatal form and cognitive impairment was noticed in half of the persons with the neonatal form. The missense mutations induced a near complete loss of function of CHT activity in cell models. At the human NMJ, a delay in synaptic maturation and an altered maintenance were observed in the antenatal and neonatal forms, respectively. Increased synaptic expression of butyrylcholinesterase was also observed, exposing the dysfunction of cholinergic metabolism when CHT is deficient in vivo. This work broadens the clinical spectrum of human diseases resulting from reduced CHT activity and highlights the complexity of cholinergic metabolism at the synapse.


Assuntos
Apneia/genética , Mutação/genética , Miastenia Gravis/genética , Terminações Pré-Sinápticas/metabolismo , Simportadores/genética , Simportadores/metabolismo , Adolescente , Apneia/complicações , Apneia/metabolismo , Apneia/patologia , Artrogripose/complicações , Artrogripose/genética , Butirilcolinesterase/metabolismo , Criança , Pré-Escolar , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/patologia , Análise Mutacional de DNA , Exoma/genética , Feminino , Genes Recessivos/genética , Células HEK293 , Heterozigoto , Homozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Hipotonia Muscular/genética , Debilidade Muscular/complicações , Debilidade Muscular/genética , Debilidade Muscular/patologia , Mutação de Sentido Incorreto/genética , Miastenia Gravis/complicações , Miastenia Gravis/metabolismo , Miastenia Gravis/patologia , Junção Neuromuscular/enzimologia , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia , Terminações Pré-Sinápticas/patologia , Simportadores/deficiência , Transmissão Sináptica
6.
Neuromuscul Disord ; 23(12): 998-1009, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24011702

RESUMO

Schwartz-Jampel syndrome (SJS) is a recessive disorder with muscle hyperactivity that results from hypomorphic mutations in the perlecan gene, a basement membrane proteoglycan. Analyses done on a mouse model have suggested that SJS is a congenital form of distal peripheral nerve hyperexcitability resulting from synaptic acetylcholinesterase deficiency, nerve terminal instability with preterminal amyelination, and subtle peripheral nerve changes. We investigated one adult patient with SJS to study this statement in humans. Perlecan deficiency due to hypomorphic mutations was observed in the patient biological samples. Electroneuromyography showed normal nerve conduction, neuromuscular transmission, and compound nerve action potentials while multiple measures of peripheral nerve excitability along the nerve trunk did not detect changes. Needle electromyography detected complex repetitive discharges without any evidence for neuromuscular transmission failure. The study of muscle biopsies containing neuromuscular junctions showed well-formed post-synaptic element, synaptic acetylcholinesterase deficiency, denervation of synaptic gutters with reinnervation by terminal sprouting, and long nonmyelinated preterminal nerve segments. These data support the notion of peripheral nerve hyperexcitability in SJS, which would originate distally from synergistic actions of peripheral nerve and neuromuscular junction changes as a result of perlecan deficiency.


Assuntos
Junção Neuromuscular/patologia , Osteocondrodisplasias/patologia , Nervos Periféricos/fisiopatologia , Adulto , Proteínas de Ligação ao Cálcio/metabolismo , Eletromiografia , Humanos , Masculino , Proteína Básica da Mielina/metabolismo , Condução Nervosa/fisiologia , Proteínas de Neurofilamentos/metabolismo , Junção Neuromuscular/metabolismo , Junção Neuromuscular/fisiopatologia , Junção Neuromuscular/ultraestrutura , Nervos Periféricos/metabolismo , Nervos Periféricos/patologia , Nervos Periféricos/ultraestrutura , Receptores Proteína Tirosina Quinases/metabolismo , Receptor ErbB-3/metabolismo , Receptores Colinérgicos/metabolismo , Proteínas S100/metabolismo
7.
PLoS Genet ; 9(2): e1003270, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23459209

RESUMO

Recent advances in the identification of susceptibility genes and environmental exposures provide broad support for a post-infectious autoimmune basis for narcolepsy/hypocretin (orexin) deficiency. We genotyped loci associated with other autoimmune and inflammatory diseases in 1,886 individuals with hypocretin-deficient narcolepsy and 10,421 controls, all of European ancestry, using a custom genotyping array (ImmunoChip). Three loci located outside the Human Leukocyte Antigen (HLA) region on chromosome 6 were significantly associated with disease risk. In addition to a strong signal in the T cell receptor alpha (TRA@), variants in two additional narcolepsy loci, Cathepsin H (CTSH) and Tumor necrosis factor (ligand) superfamily member 4 (TNFSF4, also called OX40L), attained genome-wide significance. These findings underline the importance of antigen presentation by HLA Class II to T cells in the pathophysiology of this autoimmune disease.


Assuntos
Apresentação de Antígeno , Doenças Autoimunes , Narcolepsia/genética , Receptores de Antígenos de Linfócitos T alfa-beta , Apresentação de Antígeno/genética , Apresentação de Antígeno/imunologia , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Estudos de Associação Genética , Antígenos HLA/genética , Antígenos HLA/imunologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Narcolepsia/imunologia , Narcolepsia/fisiopatologia , Neuropeptídeos/genética , Neuropeptídeos/imunologia , Neuropeptídeos/metabolismo , Orexinas , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , População Branca
9.
Nat Genet ; 44(9): 1030-4, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22842232

RESUMO

Alternating hemiplegia of childhood (AHC) is a rare, severe neurodevelopmental syndrome characterized by recurrent hemiplegic episodes and distinct neurological manifestations. AHC is usually a sporadic disorder and has unknown etiology. We used exome sequencing of seven patients with AHC and their unaffected parents to identify de novo nonsynonymous mutations in ATP1A3 in all seven individuals. In a subsequent sequence analysis of ATP1A3 in 98 other patients with AHC, we found that ATP1A3 mutations were likely to be responsible for at least 74% of the cases; we also identified one inherited mutation in a case of familial AHC. Notably, most AHC cases are caused by one of seven recurrent ATP1A3 mutations, one of which was observed in 36 patients. Unlike ATP1A3 mutations that cause rapid-onset dystonia-parkinsonism, AHC-causing mutations in this gene caused consistent reductions in ATPase activity without affecting the level of protein expression. This work identifies de novo ATP1A3 mutations as the primary cause of AHC and offers insight into disease pathophysiology by expanding the spectrum of phenotypes associated with mutations in ATP1A3.


Assuntos
Hemiplegia/genética , Mutação , ATPase Trocadora de Sódio-Potássio/genética , Adulto , Animais , Células COS , Criança , Chlorocebus aethiops , Família , Feminino , Predisposição Genética para Doença , Células HeLa , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Modelos Biológicos , Mutação/fisiologia , Linhagem , Estrutura Secundária de Proteína , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/fisiologia
10.
Am J Pathol ; 180(5): 2040-55, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22449950

RESUMO

Congenital peripheral nerve hyperexcitability (PNH) is usually associated with impaired function of voltage-gated K(+) channels (VGKCs) in neuromyotonia and demyelination in peripheral neuropathies. Schwartz-Jampel syndrome (SJS) is a form of PNH that is due to hypomorphic mutations of perlecan, the major proteoglycan of basement membranes. Schwann cell basement membrane and its cell receptors are critical for the myelination and organization of the nodes of Ranvier. We therefore studied a mouse model of SJS to determine whether a role for perlecan in these functions could account for PNH when perlecan is lacking. We revealed a role for perlecan in the longitudinal elongation and organization of myelinating Schwann cells because perlecan-deficient mice had shorter internodes, more numerous Schmidt-Lanterman incisures, and increased amounts of internodal fast VGKCs. Perlecan-deficient mice did not display demyelination events along the nerve trunk but developed dysmyelination of the preterminal segment associated with denervation processes at the neuromuscular junction. Investigating the excitability properties of the peripheral nerve suggested a persistent axonal depolarization during nerve firing in vitro, most likely due to defective K(+) homeostasis, and excluded the nerve trunk as the original site for PNH. Altogether, our data shed light on perlecan function by revealing critical roles in Schwann cell physiology and suggest that PNH in SJS originates distally from synergistic actions of peripheral nerve and neuromuscular junction changes.


Assuntos
Axônios/fisiologia , Proteoglicanas de Heparan Sulfato/fisiologia , Osteocondrodisplasias/patologia , Células de Schwann/fisiologia , Potenciais de Ação/fisiologia , Envelhecimento/fisiologia , Animais , Membrana Basal/metabolismo , Doenças Desmielinizantes/etiologia , Modelos Animais de Doenças , Estimulação Elétrica/métodos , Proteoglicanas de Heparan Sulfato/deficiência , Proteoglicanas de Heparan Sulfato/genética , Canal de Potássio Kv1.1/biossíntese , Camundongos , Camundongos Mutantes , Microscopia Eletrônica , Mutação , Bainha de Mielina/fisiologia , Bainha de Mielina/ultraestrutura , Junção Neuromuscular/fisiopatologia , Osteocondrodisplasias/complicações , Osteocondrodisplasias/fisiopatologia , Nós Neurofibrosos/metabolismo , Nós Neurofibrosos/ultraestrutura , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Células de Schwann/metabolismo , Nervo Isquiático/fisiopatologia , Nervo Isquiático/ultraestrutura
11.
J Biol Chem ; 286(4): 2596-606, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21081501

RESUMO

The amyloid precursor protein (APP) is cleaved by ß- and γ-secretases to generate the ß-amyloid (Aß) peptides, which are present in large amounts in the amyloid plaques of Alzheimer disease (AD) patient brains. Non-amyloidogenic processing of APP by α-secretases leads to proteolytic cleavage within the Aß peptide sequence and shedding of the soluble APP ectodomain (sAPPα), which has been reported to be endowed with neuroprotective properties. In this work, we have shown that activation of the purinergic receptor P2X7 (P2X7R) stimulates sAPPα release from mouse neuroblastoma cells expressing human APP, from human neuroblastoma cells and from mouse primary astrocytes or neural progenitor cells. sAPPα shedding is inhibited by P2X7R antagonists or knockdown of P2X7R with specific small interfering RNA (siRNA) and is not observed in neural cells from P2X7R-deficient mice. P2X7R-dependent APP-cleavage is independent of extracellular calcium and strongly inhibited by hydroxamate-based metalloprotease inhibitors, TAPI-2 and GM6001. However, knockdown of a disintegrin and metalloproteinase-9 (ADAM9), ADAM10 and ADAM17 by specific siRNA, known to have α-secretase activity, does not block the P2X7R-dependent non-amyloidogenic pathway. Using several specific pharmacological inhibitors, we demonstrate that the mitogen-activated protein kinase modules Erk1/2 and JNK are involved in P2X7R-dependent α-secretase activity. Our study suggests that P2X7R, which is expressed in hippocampal neurons and glial cells, is a potential therapeutic target in AD.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Astrócitos/metabolismo , Neurônios/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Células-Tronco/metabolismo , Proteínas ADAM/antagonistas & inibidores , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Linhagem Celular Tumoral , Dipeptídeos/farmacologia , Técnicas de Silenciamento de Genes , Hipocampo/metabolismo , Humanos , Ácidos Hidroxâmicos/farmacologia , MAP Quinase Quinase 4/antagonistas & inibidores , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Camundongos , Camundongos Mutantes , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Inibidores de Proteases/farmacologia , Estrutura Terciária de Proteína , Receptores Purinérgicos P2X7/genética
12.
Muscle Nerve ; 40(1): 55-61, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19367640

RESUMO

Schwartz-Jampel syndrome (SJS) is an autosomal-recessive condition characterized by muscle stiffness and chondrodysplasia. It is due to loss-of-function hypomorphic mutations in the HSPG2 gene that encodes for perlecan, a proteoglycan secreted into the basement membrane. The origin of muscle stiffness in SJS is debated. To resolve this issue, we performed an electrophysiological investigation of an SJS mouse model with a missense mutation in the HSPG2 gene. Compound muscle action potential amplitudes, distal motor latencies, repetitive nerve stimulation tests, and sensory nerve conduction velocities of SJS mice were normal. On electromyography (EMG), neuromyotonic discharges, that is, bursts of motor unit action potentials firing at high rates (120-300 HZ), were constantly observed in SJS mice in all muscles, except in the diaphragm. Neuromyotonic discharges were not influenced by general anesthesia and disappeared with curare administration. They persisted after complete motor nerve section, terminating only with Wallerian degeneration. These results demonstrate that perlecan deficiency in SJS provokes a neuromyotonic syndrome. The findings further suggest a distal axonal localization of the generator of neuromyotonic discharges. SJS should now be considered as an inherited disorder with peripheral nerve hyperexcitability.


Assuntos
Fibras Musculares Esqueléticas/fisiologia , Osteocondrodisplasias/patologia , Osteocondrodisplasias/fisiopatologia , Nervos Periféricos/fisiopatologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Fenômenos Biofísicos , Curare/farmacologia , Modelos Animais de Doenças , Estimulação Elétrica/métodos , Eletromiografia/métodos , Proteoglicanas de Heparan Sulfato/deficiência , Proteoglicanas de Heparan Sulfato/genética , Camundongos , Camundongos Transgênicos , Mutação de Sentido Incorreto/genética , Condução Nervosa/efeitos dos fármacos , Condução Nervosa/genética , Condução Nervosa/fisiologia , Fármacos Neuromusculares não Despolarizantes/farmacologia , Osteocondrodisplasias/genética , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia
13.
Neuromuscul Disord ; 19(3): 217-9, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19201608

RESUMO

Hypokalemic periodic paralysis is a rare disorder characterized by episodic attacks of muscle flaccidity associated with low serum potassium levels. We report twelve patients with normokalemic and hypokalemic periodic paralysis due to various mutations who developed hypokalemic paralytic episodes following a single dose or short-term administration of glucocorticoids. We hypothesize that glucocorticoids cause hypokalemia due to their stimulation of the Na(+)-K(+) ATPase mediated by insulin and amylin and due to their side effect of insulin resistance resulting in hyperglycemia. This report adds to the clinical description of glucocorticoids as a trigger of attacks of hypokalemic periodic paralysis indicating that glucocorticoids should be administered with caution in patients with periodic paralysis.


Assuntos
Glucocorticoides/efeitos adversos , Paralisia Periódica Hipopotassêmica/induzido quimicamente , Paralisia Periódica Hipopotassêmica/fisiopatologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiopatologia , Potássio/sangue , Adolescente , Adulto , Amiloide/metabolismo , Análise Mutacional de DNA , Feminino , Predisposição Genética para Doença/genética , Genótipo , Humanos , Hiperglicemia/induzido quimicamente , Hiperglicemia/metabolismo , Hiperglicemia/fisiopatologia , Paralisia Periódica Hipopotassêmica/genética , Insulina/metabolismo , Resistência à Insulina/fisiologia , Secreção de Insulina , Canais Iônicos/efeitos dos fármacos , Canais Iônicos/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Masculino , Músculo Esquelético/metabolismo , Mutação/genética , Potássio/análise , Estudos Retrospectivos , Distribuição por Sexo , ATPase Trocadora de Sódio-Potássio/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/metabolismo , Adulto Jovem
14.
Eur J Hum Genet ; 17(6): 844-7, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19156166

RESUMO

A recent investigation reported, for the first time, an association between variants in the IFIH1-GCA-KCNH7 locus and multiple sclerosis (MS). We sought to replicate this genetic association in MS with a new independent MS cohort composed of French Caucasian MS trio families. The two most significant IFIH1 single nucleotide polymorphisms, rs1990760 and rs2068330, reported as involved in MS susceptibility, were genotyped in 591 French Caucasian MS trio families, and analyzed using the transmission/disequilibrium test. No association with MS was found (rs1990760, P=0.45 and rs2068330, P=0.27). Similarly, no significant association was detected after stratification for HLA-DRB1*1501 carriers. Reasons that may explain this discrepancy between the original report and our study are discussed.


Assuntos
Proteínas de Ligação ao Cálcio/genética , RNA Helicases DEAD-box/genética , Canais de Potássio Éter-A-Go-Go/genética , Predisposição Genética para Doença/genética , Esclerose Múltipla/genética , Estudos de Coortes , França , Variação Genética , Genótipo , Humanos , Helicase IFIH1 Induzida por Interferon
15.
Sci Transl Med ; 1(10): 10ra21, 2009 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-20368159

RESUMO

Multiple sclerosis, the most common cause of progressive neurological disability in young adults, is a chronic inflammatory disease. There is solid evidence for a genetic influence in multiple sclerosis, and deciphering the causative genes could reveal key pathways influencing the disease. A genome region on rat chromosome 9 regulates experimental autoimmune encephalomyelitis, a model for multiple sclerosis. Using interval-specific congenic rat lines and association of single-nucleotide polymorphisms with inflammatory phenotypes, we localized the gene of influence to Vav1, which codes for a signal-transducing protein in leukocytes. Analysis of seven human cohorts (12,735 individuals) demonstrated an association of rs2546133-rs2617822 haplotypes in the first VAV1 intron with multiple sclerosis (CA: odds ratio, 1.18; CG: odds ratio, 0.86; TG: odds ratio, 0.90). The risk CA haplotype also predisposed for higher VAV1 messenger RNA expression. VAV1 expression was increased in individuals with multiple sclerosis and correlated with tumor necrosis factor and interferon-gamma expression in peripheral blood and cerebrospinal fluid cells. We conclude that VAV1 plays a central role in controlling central nervous system immune-mediated disease and proinflammatory cytokine production critical for disease pathogenesis.


Assuntos
Encefalomielite Autoimune Experimental/fisiopatologia , Esclerose Múltipla/fisiopatologia , Proteínas Proto-Oncogênicas c-vav/fisiologia , Animais , Linfócitos T CD4-Positivos/imunologia , Encefalomielite Autoimune Experimental/imunologia , Interferon gama/genética , Esclerose Múltipla/imunologia , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas c-vav/genética , Locos de Características Quantitativas , Ratos , Fator de Necrose Tumoral alfa/genética
16.
Hum Mol Genet ; 17(20): 3166-79, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18647752

RESUMO

Schwartz-Jampel syndrome (SJS) is a recessive neuromyotonia with chondrodysplasia. It results from hypomorphic mutations of the gene encoding perlecan, leading to a decrease in the levels of this heparan sulphate proteoglycan in basement membranes (BMs). It has been suggested that SJS neuromyotonia may result from endplate acetylcholinesterase (AChE) deficiency, but this hypothesis has never been investigated in vivo due to the lack of an animal model for neuromyotonia. We used homologous recombination to generate a knock-in mouse strain with one missense substitution, corresponding to a human familial SJS mutation (p.C1532Y), in the perlecan gene. We derived two lines, one with the p.C1532Y substitution alone and one with p.C1532Y and the selectable marker Neo, to down-regulate perlecan gene activity and to test for a dosage effect of perlecan in mammals. These two lines mimicked SJS neuromyotonia with spontaneous activity on electromyogramm (EMG). An inverse correlation between disease severity and perlecan secretion in the BMs was observed at the macroscopic and microscopic levels, consistent with a dosage effect. Endplate AChE levels were low in both lines, due to synaptic perlecan deficiency rather than major myofibre or neuromuscular junction disorganization. Studies of muscle contractile properties showed muscle fatigability at low frequencies of nerve stimulation and suggested that partial endplate AChE deficiency might contribute to SJS muscle stiffness by potentiating muscle force. However, physiological endplate AChE deficiency was not associated with spontaneous activity at rest on EMG in the diaphragm, suggesting that additional changes are required to generate such activity characteristic of SJS.


Assuntos
Acetilcolinesterase/deficiência , Acetilcolinesterase/genética , Síndrome de Isaacs/enzimologia , Síndrome de Isaacs/genética , Placa Motora/enzimologia , Osteocondrodisplasias/enzimologia , Osteocondrodisplasias/genética , Alelos , Animais , Modelos Animais de Doenças , Eletromiografia , Feminino , Dosagem de Genes , Proteoglicanas de Heparan Sulfato/deficiência , Proteoglicanas de Heparan Sulfato/genética , Humanos , Síndrome de Isaacs/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Transgênicos , Placa Motora/fisiopatologia , Contração Muscular/genética , Contração Muscular/fisiologia , Mutação de Sentido Incorreto , Osteocondrodisplasias/fisiopatologia , Fenótipo
17.
Am J Med Genet A ; 146A(3): 380-3, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18203179

RESUMO

We report on a patient with a severe, rare neonatal form of non-dystrophic myotonia. The patient presented with facial dysmorphism, muscle hypertrophy, severe constipation, psychomotor delay, and frequent cold-induced episodes of myotonia and muscle weakness leading to severe hypoxia and loss of consciousness. Muscle biopsy was non-specific and electromyography revealed intense generalized myotonia. The myotonic episodes improved after introducing oral mexiletine and maintaining room temperature at 28 degrees C. The patient died at 20 months of age following a bronchopulmonary infection. A previously undescribed de novo heterozygous c.3891C > A change, which predicts p.N1297K in the SCN4A gene. Mutations within the voltage-gated sodium channel alpha-subunit gene (SCN4A) have been described in association with several phenotypes including paramyotonia congenita, hyperkalemic or hypokalemic periodic paralysis, and potassium-aggravated myotonias. The cold-sensitive episodes of stiffness followed by weakness suggested the diagnosis of channelopathy in our patient. However, her neonatal onset, the triggering of severe episodes by exposure to modest decreases in temperature, involvement of respiratory muscles with prolonged apnea, early-onset muscle hypertrophy, psychomotor retardation, and fatal outcome are evocative of a distinct clinical subtype. Our observation expands the phenotypic spectrum of sodium channelopathies.


Assuntos
Miotonia Congênita/genética , Canais de Sódio/genética , Feminino , Humanos , Lactente , Recém-Nascido , Miotonia Congênita/diagnóstico , Miotonia Congênita/etiologia , Miotonia Congênita/fisiopatologia , Canal de Sódio Disparado por Voltagem NAV1.4
18.
Neurotherapeutics ; 4(2): 225-32, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17395132

RESUMO

Rare diseases have attracted little attention in the past from physicians and researchers. The situation has recently changed for several reasons. First, patient associations have successfully advocated their cause to institutions and governments. They were able to argue that, taken together, rare diseases affect approximately 10% of the population in developed countries. Second, almost 80% of rare diseases are of genetic origin. Advances in genetics have enabled the identification of the causative genes. Unprecedented financial support has been dedicated to research on rare diseases, as well as to the development of referral centers aimed at improving the quality of care. This expenditure of resources is justified by the experience in cystic fibrosis, which demonstrated that improved care delivered by specialized referral centers resulted in a dramatic increase of life expectancy. Moreover, clinical referral centers offer the unique possibility of developing high quality clinical research studies, not otherwise possible because of the geographic dispersion of patients. This is the case in France where national referral centers for rare diseases were created, including one for muscle channelopathies. The aim of this center is to develop appropriate care, clinical research, and teaching on periodic paralysis and myotonia. In this review, we plan to demonstrate how research has improved our knowledge of hypokalemic periodic paralysis and the way we evaluate, advise, and treat patients. We also advocate for the establishment of international collaborations, which are mandatory for the follow-up of cohorts and conduct of definitive therapeutic trials in rare diseases.


Assuntos
Pesquisa Biomédica , Canalopatias , Paralisia Periódica Hipopotassêmica , Modelos Biológicos , Canalopatias/genética , Canalopatias/fisiopatologia , Canalopatias/terapia , Humanos , Paralisia Periódica Hipopotassêmica/genética , Paralisia Periódica Hipopotassêmica/fisiopatologia , Paralisia Periódica Hipopotassêmica/terapia , Canais Iônicos/genética , Mutação/genética
19.
Hum Mutat ; 27(11): 1082-91, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16927315

RESUMO

Schwartz-Jampel syndrome (SJS) is a rare autosomal recessive condition defined by the association of myotonia with chondrodysplasia. SJS results from mutations in the HSPG2 gene, which encodes perlecan, a major component of basement membranes. Only eight HSPG2 mutations have been reported in six SJS families. Here, we describe the molecular findings in 23 families (35 patients) with SJS, being one-third of the SJS cases reported in the medical literature. We identified 22 new HSPG2 mutations and unreported polymorphisms. Mutations included nine deletion or insertion (41%), six splice site (27%), five missense (23%), and two nonsense mutations (9%). All but four mutations were private, and we found no evidence for a founder effect. Analyses of HSPG2 messenger RNA (mRNA) and perlecan immunostaining on patients' cells revealed a hypomorphic effect of the studied mutations. They also demonstrated distinct consequences of truncating and missense mutations on perlecan expression as truncating mutations resulted in instability of HSPG2 mRNA through nonsense mRNA-mediated decay, whereas missense mutations involving cysteine residues led to intracellular retention of perlecan, probably due to quality control pathways. Our analyses strengthen the idea that SJS results from hypomorphic mutations of the HSPG2 gene. They also propose tools for its molecular diagnosis and provide new clues for the understanding of its pathophysiology.


Assuntos
Proteoglicanas de Heparan Sulfato/genética , Mutação , Osteocondrodisplasias/genética , Processamento Alternativo/genética , Sequência de Bases , Células Cultivadas , Análise Mutacional de DNA , Feminino , Expressão Gênica , Genótipo , Haplótipos , Proteoglicanas de Heparan Sulfato/metabolismo , Humanos , Masculino , Modelos Genéticos , Proteínas Mutantes/metabolismo , Fenótipo , Análise de Sequência de DNA
20.
Am J Hum Genet ; 74(2): 298-305, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14740318

RESUMO

Stuve-Wiedemann syndrome (SWS) is a severe autosomal recessive condition characterized by bowing of the long bones, with cortical thickening, flared metaphyses with coarsened trabecular pattern, camptodactyly, respiratory distress, feeding difficulties, and hyperthermic episodes responsible for early lethality. Clinical overlap with Schwartz-Jampel type 2 syndrome (SJS2) has suggested that SWS and SJS2 could be allelic disorders. Through studying a series of 19 families with SWS/SJS2, we have mapped the disease gene to chromosome 5p13.1 at locus D5S418 (Zmax=10.66 at theta =0) and have identified null mutations in the leukemia inhibitory factor receptor (LIFR or gp190 chain) gene. A total of 14 distinct mutations were identified in the 19 families. An identical frameshift insertion (653_654insT) was identified in families from the United Arab Emirates, suggesting a founder effect in that region. It is interesting that 12/14 mutations predicted premature termination of translation. Functional studies indicated that these mutations alter the stability of LIFR messenger RNA transcripts, resulting in the absence of the LIFR protein and in the impairment of the JAK/STAT3 signaling pathway in patient cells. We conclude, therefore, that SWS and SJS2 represent a single clinically and genetically homogeneous condition due to null mutations in the LIFR gene on chromosome 5p13.


Assuntos
Mutação , Osteocondrodisplasias/genética , Receptores de Citocinas/genética , Sequência de Bases , Criança , Cromossomos Humanos Par 5 , Primers do DNA , Ligação Genética , Humanos , Imuno-Histoquímica , Subunidade alfa de Receptor de Fator Inibidor de Leucemia , Dados de Sequência Molecular , Receptores de OSM-LIF
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA