Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34526403

RESUMO

The spleen contains phenotypically and functionally distinct conventional dendritic cell (cDC) subpopulations, termed cDC1 and cDC2, which each can be divided into several smaller and less well-characterized subsets. Despite advances in understanding the complexity of cDC ontogeny by transcriptional programming, the significance of posttranslational modifications in controlling tissue-specific cDC subset immunobiology remains elusive. Here, we identified the cell-surface-expressed A-disintegrin-and-metalloproteinase 10 (ADAM10) as an essential regulator of cDC1 and cDC2 homeostasis in the splenic marginal zone (MZ). Mice with a CD11c-specific deletion of ADAM10 (ADAM10ΔCD11c) exhibited a complete loss of splenic ESAMhi cDC2A because ADAM10 regulated the commitment, differentiation, and survival of these cells. The major pathways controlled by ADAM10 in ESAMhi cDC2A are Notch, signaling pathways involved in cell proliferation and survival (e.g., mTOR, PI3K/AKT, and EIF2 signaling), and EBI2-mediated localization within the MZ. In addition, we discovered that ADAM10 is a molecular switch regulating cDC2 subset heterogeneity in the spleen, as the disappearance of ESAMhi cDC2A in ADAM10ΔCD11c mice was compensated for by the emergence of a Clec12a+ cDC2B subset closely resembling cDC2 generally found in peripheral lymph nodes. Moreover, in ADAM10ΔCD11c mice, terminal differentiation of cDC1 was abrogated, resulting in severely reduced splenic Langerin+ cDC1 numbers. Next to the disturbed splenic cDC compartment, ADAM10 deficiency on CD11c+ cells led to an increase in marginal metallophilic macrophage (MMM) numbers. In conclusion, our data identify ADAM10 as a molecular hub on both cDC and MMM regulating their transcriptional programming, turnover, homeostasis, and ability to shape the anatomical niche of the MZ.


Assuntos
Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Células Dendríticas/metabolismo , Proteínas de Membrana/metabolismo , Proteína ADAM10/fisiologia , Secretases da Proteína Precursora do Amiloide/fisiologia , Animais , Células Apresentadoras de Antígenos/metabolismo , Antígeno CD11c/metabolismo , Diferenciação Celular , Proliferação de Células , Feminino , Homeostase , Tecido Linfoide/metabolismo , Macrófagos/metabolismo , Masculino , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Processamento de Proteína Pós-Traducional/genética , Processamento de Proteína Pós-Traducional/fisiologia , Transdução de Sinais , Baço/citologia , Baço/metabolismo
2.
Bioinformatics ; 37(21): 3981-3982, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34358314

RESUMO

SUMMARY: Lipids exhibit an essential role in cellular assembly and signaling. Dysregulation of these functions has been linked with many complications including obesity, diabetes, metabolic disorders, cancer and more. Investigating lipid profiles in such conditions can provide insights into cellular functions and possible interventions. Hence the field of lipidomics is expanding in recent years. Even though the role of individual lipids in diseases has been investigated, there is no resource to perform disease enrichment analysis considering the cumulative association of a lipid set. To address this, we have implemented the LipiDisease web server. The tool analyzes millions of records from the PubMed biomedical literature database discussing lipids and diseases, predicts their association and ranks them according to false discovery rates generated by random simulations. The tool takes into account 4270 diseases and 4798 lipids. Since the tool extracts the information from PubMed records, the number of diseases and lipids will be expanded over time as the biomedical literature grows. AVAILABILITY AND IMPLEMENTATION: The LipiDisease webserver can be freely accessed at http://cbdm-01.zdv.uni-mainz.de:3838/piyusmor/LipiDisease/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Lipídeos , Software , PubMed , Bases de Dados Factuais , Lipídeos/análise , Mineração de Dados
3.
Cells ; 10(4)2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805436

RESUMO

Long intergenic non-coding RNAs (LincRNAs) are long RNAs that do not encode proteins. Functional evidence is lacking for most of them. Their biogenesis is not well-known, but it is thought that many lincRNAs originate from genomic duplication of coding material, resulting in pseudogenes, gene copies that lose their original function and can accumulate mutations. While most pseudogenes eventually stop producing a transcript and become erased by mutations, many of these pseudogene-based lincRNAs keep similarity to the parental gene from which they originated, possibly for functional reasons. For example, they can act as decoys for miRNAs targeting the parental gene. Enrichment analysis of function is a powerful tool to discover the functional effects of a treatment producing differential expression of transcripts. However, in the case of lincRNAs, since their function is not easy to define experimentally, such a tool is lacking. To address this problem, we have developed an enrichment analysis tool that focuses on lincRNAs exploiting their functional association, using as a proxy function that of the parental genes and has a focus on human diseases.


Assuntos
Doença/genética , Perfilação da Expressão Gênica , RNA Longo não Codificante/genética , Neoplasias da Mama/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Internet , Estimativa de Kaplan-Meier , Prognóstico , RNA Longo não Codificante/metabolismo , Interface Usuário-Computador
4.
Nucleic Acids Res ; 48(9): e53, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32187374

RESUMO

Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is used to identify genome-wide DNA regions bound by proteins. Given one ChIP-seq experiment with replicates, binding sites not observed in all the replicates will usually be interpreted as noise and discarded. However, the recent discovery of high-occupancy target (HOT) regions suggests that there are regions where binding of multiple transcription factors can be identified. To investigate ChIP-seq variability, we developed a reproducibility score and a method that identifies cell-specific variable regions in ChIP-seq data by integrating replicated ChIP-seq experiments for multiple protein targets on a particular cell type. Using our method, we found variable regions in human cell lines K562, GM12878, HepG2, MCF-7 and in mouse embryonic stem cells (mESCs). These variable-occupancy target regions (VOTs) are CG dinucleotide rich, and show enrichment at promoters and R-loops. They overlap significantly with HOT regions, but are not blacklisted regions producing non-specific binding ChIP-seq peaks. Furthermore, in mESCs, VOTs are conserved among placental species suggesting that they could have a function important for this taxon. Our method can be useful to point to such regions along the genome in a given cell type of interest, to improve the downstream interpretative analysis before follow-up experiments.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Linhagem Celular Tumoral , Cromatina/metabolismo , Células-Tronco Embrionárias/metabolismo , Evolução Molecular , Variação Genética , Genômica/métodos , Humanos , Células K562 , Células MCF-7 , Camundongos , Nucleotídeos/análise , Análise de Componente Principal , Regiões Promotoras Genéticas , Estruturas R-Loop
5.
Cell Syst ; 5(2): 128-139.e4, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28837810

RESUMO

Systematic assessment of tyrosine kinase-substrate relationships is fundamental to a better understanding of cellular signaling and its profound alterations in human diseases such as cancer. In human cells, such assessments are confounded by complex signaling networks, feedback loops, conditional activity, and intra-kinase redundancy. Here we address this challenge by exploiting the yeast proteome as an in vivo model substrate. We individually expressed 16 human non-receptor tyrosine kinases (NRTKs) in Saccharomyces cerevisiae and identified 3,279 kinase-substrate relationships involving 1,351 yeast phosphotyrosine (pY) sites. Based on the yeast data without prior information, we generated a set of linear kinase motifs and assigned ∼1,300 known human pY sites to specific NRTKs. Furthermore, experimentally defined pY sites for each individual kinase were shown to cluster within the yeast interactome network irrespective of linear motif information. We therefore applied a network inference approach to predict kinase-substrate relationships for more than 3,500 human proteins, providing a resource to advance our understanding of kinase biology.


Assuntos
Mapas de Interação de Proteínas , Proteínas Tirosina Quinases/metabolismo , Saccharomyces cerevisiae/genética , Motivos de Aminoácidos , Humanos , Fosforilação , Proteínas Tirosina Quinases/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência
6.
Genome Med ; 8(1): 28, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26988706

RESUMO

BACKGROUND: NF-κB is widely involved in lymphoid malignancies; however, the functional roles and specific transcriptomes of NF-κB dimers with distinct subunit compositions have been unclear. METHODS: Using combined ChIP-sequencing and microarray analyses, we determined the cistromes and target gene signatures of canonical and non-canonical NF-κB species in Hodgkin lymphoma (HL) cells. RESULTS: We found that the various NF-κB subunits are recruited to regions with redundant κB motifs in a large number of genes. Yet canonical and non-canonical NF-κB dimers up- and downregulate gene sets that are both distinct and overlapping, and are associated with diverse biological functions. p50 and p52 are formed through NIK-dependent p105 and p100 precursor processing in HL cells and are the predominant DNA binding subunits. Logistic regression analyses of combinations of the p50, p52, RelA, and RelB subunits in binding regions that have been assigned to genes they regulate reveal a cross-contribution of p52 and p50 to canonical and non-canonical transcriptomes. These analyses also indicate that the subunit occupancy pattern of NF-κB binding regions and their distance from the genes they regulate are determinants of gene activation versus repression. The pathway-specific signatures of activated and repressed genes distinguish HL from other NF-κB-associated lymphoid malignancies and inversely correlate with gene expression patterns in normal germinal center B cells, which are presumed to be the precursors of HL cells. CONCLUSIONS: We provide insights that are relevant for lymphomas with constitutive NF-κB activation and generally for the decoding of the mechanisms of differential gene regulation through canonical and non-canonical NF-κB signaling.


Assuntos
Estudo de Associação Genômica Ampla , Doença de Hodgkin/genética , Doença de Hodgkin/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular , Imunoprecipitação da Cromatina , Biologia Computacional/métodos , Bases de Dados de Ácidos Nucleicos , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Subunidade p50 de NF-kappa B/genética , Subunidade p50 de NF-kappa B/metabolismo , Subunidade p52 de NF-kappa B/genética , Subunidade p52 de NF-kappa B/metabolismo , Motivos de Nucleotídeos , Ligação Proteica , Multimerização Proteica , Transdução de Sinais , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Fator de Transcrição RelB/genética , Fator de Transcrição RelB/metabolismo , Ativação Transcricional
7.
J Clin Endocrinol Metab ; 98(5): E981-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23569218

RESUMO

CONTEXT: Focusing on mitochondrial function and thyroid tumorigenesis, we used an integrative approach to identify relevant biomarkers for borderline thyroid lesions. DESIGN: Using cDNA and microRNA (miRNA) microarrays and quantitative RT-PCR analysis (qPCR), we explored samples of various types of thyroid tumors including 25 benign follicular adenomas represented by macrofollicular variants of thyroid adenomas, 38 oncocytic variants of follicular thyroid tumors, 19 papillary thyroid carcinomas, and 10 tumors of uncertain malignant potential, together with 53 normal thyroid tissue samples. RESULTS: Our transcriptomic analysis, which highlighted discrepancies between controls and tumor tissues, as well as between various tumor types, led to the identification of 13 genes, allowing discrimination between the thyroid adenomas, oncocytic variants of follicular thyroid tumors, and papillary thyroid carcinomas, whereas the tumors of uncertain malignant potential were found to overlap these classes. Five of these genes (TP53, HOXA9, RUNX1, MYD88, and CITED1), with a differential expression confirmed by qPCR analysis, are implicated in tumorigenesis, 4 in mitochondrial metabolism (MRPL14, MRPS2, MRPS28, and COX6A1), and 2 in thyroid metabolic pathways (CaMKIINalpha and TPO). The global miRNA analysis revealed 62 differential miRNAs, the expression level for 10 of these being confirmed by qPCR. The differential expression of the miRNAs was in accordance with the modulation of gene expression and the ontologies revealed by our transcriptomic analysis. CONCLUSIONS: These findings reinforce the classification of follicular thyroid tumors established by the World Health Organization, and our technique offers a novel molecular approach to refine the classification of thyroid tumors of uncertain malignant potential.


Assuntos
Adenocarcinoma Folicular/diagnóstico , MicroRNAs/metabolismo , Proteínas de Neoplasias/metabolismo , RNA Neoplásico/metabolismo , Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/diagnóstico , Adenocarcinoma Folicular/metabolismo , Adenocarcinoma Folicular/cirurgia , Adenoma/diagnóstico , Adenoma/metabolismo , Biomarcadores/metabolismo , Carcinoma/diagnóstico , Carcinoma/metabolismo , Carcinoma/cirurgia , Carcinoma Papilar , Análise por Conglomerados , Análise Discriminante , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Neoplasias/genética , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Componente Principal , Câncer Papilífero da Tireoide , Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/cirurgia
8.
PLoS One ; 8(3): e58683, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23516535

RESUMO

Metabolic modifications of tumor cells are hallmarks of cancer. They exhibit an altered metabolism that allows them to sustain higher proliferation rates in hostile environment outside the cell. In thyroid tumors, the expression of the estrogen-related receptor α (ERRα), a major factor of metabolic adaptation, is closely related to the oxidative metabolism and the proliferative status of the cells. To elucidate the role played by ERRα in the glycolytic adaptation of tumor cells, we focused on the regulation of lactate dehydrogenases A and B (LDHA, LDHB) and the LDHA/LDHB ratio. Our study included tissue samples from 10 classical and 10 oncocytic variants of follicular thyroid tumors and 10 normal thyroid tissues, as well as samples from three human thyroid tumor cell lines: FTC-133, XTC.UC1 and RO82W-1. We identified multiple cis-acting promoter elements for ERRα, in both the LDHA and LDHB genes. The interaction between ERRα and LDH promoters was confirmed by chromatin immunoprecipitation assays and in vitro analysis for LDHB. Using knock-in and knock-out cellular models, we found an inverse correlation between ERRα expression and LDH activity. This suggests that thyroid tumor cells may reprogram their metabolic pathways through the up-regulation of ERRα by a process distinct from that proposed by the recently revisited Warburg hypothesis.


Assuntos
L-Lactato Desidrogenase/metabolismo , Receptores de Estrogênio/metabolismo , Neoplasias da Glândula Tireoide/patologia , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glicólise , Humanos , L-Lactato Desidrogenase/genética , Regiões Promotoras Genéticas/genética , Receptor ERRalfa Relacionado ao Estrogênio
9.
BMC Bioinformatics ; 12: 435, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-22070195

RESUMO

BACKGROUND: Biological function is greatly dependent on the interactions of proteins with other proteins and genes. Abstracts from the biomedical literature stored in the NCBI's PubMed database can be used for the derivation of interactions between genes and proteins by identifying the co-occurrences of their terms. Often, the amount of interactions obtained through such an approach is large and may mix processes occurring in different contexts. Current tools do not allow studying these data with a focus on concepts of relevance to a user, for example, interactions related to a disease or to a biological mechanism such as protein aggregation. RESULTS: To help the concept-oriented exploration of such data we developed PESCADOR, a web tool that extracts a network of interactions from a set of PubMed abstracts given by a user, and allows filtering the interaction network according to user-defined concepts. We illustrate its use in exploring protein aggregation in neurodegenerative disease and in the expansion of pathways associated to colon cancer. CONCLUSIONS: PESCADOR is a platform independent web resource available at: http://cbdm.mdc-berlin.de/tools/pescador/


Assuntos
Mineração de Dados , PubMed , Software , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Humanos , Internet , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Proteínas/genética , Proteínas/metabolismo
10.
Neuron ; 70(3): 522-35, 2011 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-21555077

RESUMO

Nicotine dependence is linked to single nucleotide polymorphisms in the CHRNB4-CHRNA3-CHRNA5 gene cluster encoding the α3ß4α5 nicotinic acetylcholine receptor (nAChR). Here we show that the ß4 subunit is rate limiting for receptor activity, and that current increase by ß4 is maximally competed by one of the most frequent variants associated with tobacco usage (D398N in α5). We identify a ß4-specific residue (S435), mapping to the intracellular vestibule of the α3ß4α5 receptor in close proximity to α5 D398N, that is essential for its ability to increase currents. Transgenic mice with targeted overexpression of Chrnb4 to endogenous sites display a strong aversion to nicotine that can be reversed by viral-mediated expression of the α5 D398N variant in the medial habenula (MHb). Thus, this study both provides insights into α3ß4α5 receptor-mediated mechanisms contributing to nicotine consumption, and identifies the MHb as a critical element in the circuitry controlling nicotine-dependent phenotypes.


Assuntos
Habenula/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Nicotina/farmacologia , Receptores Nicotínicos/metabolismo , Administração Oral , Análise de Variância , Animais , Animais Recém-Nascidos , Asparagina/genética , Ácido Aspártico/genética , Autorradiografia/métodos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacocinética , Linhagem Celular Transformada , Condicionamento Operante/efeitos dos fármacos , Estimulação Elétrica , Proteínas de Fluorescência Verde/genética , Habenula/citologia , Humanos , Técnicas In Vitro , Isótopos de Iodo/farmacocinética , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Mutação/genética , Proteínas do Tecido Nervoso/genética , Neurônios/fisiologia , Agonistas Nicotínicos/farmacocinética , Oócitos , Técnicas de Patch-Clamp/métodos , Polimorfismo de Nucleotídeo Único/genética , Piridinas/farmacocinética , Receptores Nicotínicos/genética , Técnicas Estereotáxicas , Xenopus
11.
PLoS One ; 4(11): e7964, 2009 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-19956726

RESUMO

BACKGROUND: The PGC-1 related coactivator (PRC), which shares structural and functional features with PGC-1alpha, is believed to regulate several metabolic pathways as well as mitochondrial biogenesis. Its involvement in the early programming of cell proliferation suggests the existence of finely regulated crosstalk between mitochondrial functions and the cell cycle status. METHODOLOGY/PRINCIPAL FINDINGS: PRC-regulated pathways were explored in a cell-line model derived from mitochondrial-rich tumours with an essentially oxidative metabolism and specifically high PRC expression. The functional status of mitochondria was compared to the results of microarray analysis under conditions of temporal PRC inhibition. To specify the fine PRC regulation, the expression levels of the genes and proteins involved in the oxidative phosphorylation process were studied by real time quantitative PCR and western blotting. As in earlier studies on PGC-1alpha, we investigated the role of nitric oxide in PRC-regulated mitochondrial biogenesis and determined its action in the control of the phosphorylation status of the mitogen-activated protein kinase pathway. CONCLUSION/SIGNIFICANCE: We found that nitric oxide rapidly influences PRC expression at the transcriptional level. Focusing on mitochondrial energetic metabolism, we observed that PRC differentially controls respiratory chain complexes and coupling efficiency in a time-dependent manner to maintain mitochondrial homeostasis. Our results highlight the key role of PRC in the rapid modulation of metabolic functions in response to the status of the cell cycle.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Núcleo Celular/metabolismo , Mitocôndrias/metabolismo , Óxido Nítrico/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Análise por Conglomerados , Transporte de Elétrons , Citometria de Fluxo/métodos , Regulação da Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
PLoS One ; 4(10): e7632, 2009 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-19893615

RESUMO

BACKGROUND: Genetic markers for thyroid cancers identified by microarray analysis have offered limited predictive accuracy so far because of the few classes of thyroid lesions usually taken into account. To improve diagnostic relevance, we have simultaneously analyzed microarray data from six public datasets covering a total of 347 thyroid tissue samples representing 12 histological classes of follicular lesions and normal thyroid tissue. Our own dataset, containing about half the thyroid tissue samples, included all categories of thyroid lesions. METHODOLOGY/PRINCIPAL FINDINGS: Classifier predictions were strongly affected by similarities between classes and by the number of classes in the training sets. In each dataset, sample prediction was improved by separating the samples into three groups according to class similarities. The cross-validation of differential genes revealed four clusters with functional enrichments. The analysis of six of these genes (APOD, APOE, CLGN, CRABP1, SDHA and TIMP1) in 49 new samples showed consistent gene and protein profiles with the class similarities observed. Focusing on four subclasses of follicular tumor, we explored the diagnostic potential of 12 selected markers (CASP10, CDH16, CLGN, CRABP1, HMGB2, ALPL2, ADAMTS2, CABIN1, ALDH1A3, USP13, NR2F2, KRTHB5) by real-time quantitative RT-PCR on 32 other new samples. The gene expression profiles of follicular tumors were examined with reference to the mutational status of the Pax8-PPARgamma, TSHR, GNAS and NRAS genes. CONCLUSION/SIGNIFICANCE: We show that diagnostic tools defined on the basis of microarray data are more relevant when a large number of samples and tissue classes are used. Taking into account the relationships between the thyroid tumor pathologies, together with the main biological functions and pathways involved, improved the diagnostic accuracy of the samples. Our approach was particularly relevant for the classification of microfollicular adenomas.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Análise por Conglomerados , Análise Mutacional de DNA , Primers do DNA/química , Marcadores Genéticos , Humanos , Mutação , Fator de Transcrição PAX8 , PPAR gama/biossíntese , Fatores de Transcrição Box Pareados/biossíntese , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA