Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Planta Med ; 89(2): 183-193, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36220097

RESUMO

Lychnophora is a genus of South American flowering plants in the daisy family, popularly known as "Brazilian arnica". It is used in traditional medicine as an anti-inflammatory and analgesic agent, whose active components are derived from chlorogenic acid (CGA) and C-flavonoids. Since the drugs currently used are ineffective to treat glaucoma, agents with antioxidant and anti-inflammatory properties may represent new alternatives in preventing cellular lesions in retinal ischemia. In this study, we report the neuroprotective effects of CGA and 4,5-di-O-[E]-caffeoylquinic (CQA) acid, isolated from Lychnophora plants, in a rodent glaucoma model. Wistar rats were administered intravitreally with 10 µg CGA or CGA, and then subjected to acute retinal ischemia (ISC) by increasing intraocular pressure (IPO) for 45 minutes followed (or not) by 15 minutes of reperfusion (I/R). Qualitative and quantitative analyses of neurodegeneration were performed using hematoxylin-eosin or Fluoro-Jade C staining protocols. All retinas submitted to ISC or I/R exhibited matrix disorganization, pyknotic nuclei, and pronounced vacuolization of the cytoplasm in the ganglion cell layer (GCL) and inner nuclear layer (INL). Pretreatment with CGA or CQA resulted in the protection of the retinal layers against matrix disorganization and a reduction in the number of vacuolized cells and pyknotic nuclei. Also, pretreatment with CGA or CQA resulted in a significant reduction in neuronal death in the GCL, the INL, and the outer nuclear layer (ONL) after ischemic insult. Our study demonstrated that CGA and CQA exhibit neuroprotective activities in retinas subjected to ISC and I/R induced by IPO in Wistar rats.


Assuntos
Arnica , Glaucoma , Fármacos Neuroprotetores , Doenças Retinianas , Ratos , Animais , Ácido Clorogênico/farmacologia , Ácido Clorogênico/uso terapêutico , Ratos Wistar , Brasil , Doenças Retinianas/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Anti-Inflamatórios , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Glaucoma/tratamento farmacológico
2.
Parasitol Res ; 121(5): 1329-1343, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35169884

RESUMO

Echinococcus granulosus, the etiological agent of human cystic echinococcosis (formerly known as hydatid disease), represents a serious worldwide public health problem with limited treatment options. The essential role played by the neuromuscular system in parasite survival and the relevance of serotonin (5-HT) in parasite movement and development make the serotonergic system an attractive source of drug targets. In this study, we cloned and sequenced a cDNA coding for the serotonin transporter from E. granulosus (EgSERT). Bioinformatic analyses suggest that EgSERT has twelve transmembrane domains with highly conserved ligand and ionic binding sites but a less conserved allosteric site compared with the human orthologue (HsSERT). Modeling studies also suggest a good degree of conservation of the overall structure compared with HsSERT. Functional and pharmacological studies performed on the cloned EgSERT confirm that this protein is indeed a serotonin transporter. EgSERT is specific for 5-HT and does not transport other neurotransmitters. Typical monoamine transport inhibitors also displayed inhibitory activities towards EgSERT, but with lower affinity than for the human SERT (HsSERT), suggesting a high divergence of the cestode transporter compared with HsSERT. In situ hybridization studies performed in the larval protoscolex stage suggest that EgSERT is located in discrete regions that are compatible with the major ganglia of the serotonergic nervous system. The pharmacological properties, the amino acidic substitutions at important functional regions compared with the HsSERT, and the putative role of EgSERT in the nervous system suggest that it could be an important target for pharmacological intervention.


Assuntos
Cestoides , Equinococose , Echinococcus granulosus , Animais , Equinococose/parasitologia , Echinococcus granulosus/fisiologia , Humanos , Sistema Nervoso/metabolismo , Serotonina/metabolismo , Serotonina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo
3.
ACS Chem Neurosci ; 10(8): 3718-3730, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31184115

RESUMO

The dopamine transporter (DAT) serves a pivotal role in controlling dopamine (DA)-mediated neurotransmission by clearing DA from synaptic and perisynaptic spaces and controlling its action at postsynaptic DA receptors. Major drugs of abuse such as amphetamine and cocaine interact with DAT to mediate their effects by enhancing extracellular DA concentrations. We previously identified a novel allosteric site in the related human serotonin transporter that lies outside the central substrate and inhibitor binding pocket. We used the hybrid structure based (HSB) method to screen for allosteric modulator molecules that target a similar site in DAT. We identified a compound, KM822, that was found to be a selective, noncompetitive inhibitor of DAT. We confirmed the structural determinants of KM822 allosteric binding within the allosteric site by structure/function and substituted cysteine scanning accessibility biotinylation experiments. In the in vitro cell-based assay and ex vivo in both rat striatal synaptosomal and slice preparations, KM822 was found to decrease the affinity of cocaine for DAT. The in vivo effects of KM822 on cocaine were tested on psychostimulant-associated behaviors in a planarian model where KM822 specifically inhibited the locomotion elicited by DAT-interacting stimulants amphetamine and cocaine. Overall, KM822 provides a unique opportunity as a molecular probe to examine allosteric modulation of DAT function.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Dopamina/metabolismo , Sinaptossomos/efeitos dos fármacos , Animais , Cocaína/farmacologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Humanos , Masculino , Atividade Motora/efeitos dos fármacos , Planárias , Ratos , Ratos Sprague-Dawley , Sinaptossomos/metabolismo
4.
Neurotox Res ; 36(1): 175-192, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31016689

RESUMO

Peripheral sensory neuropathy (PSN) is a well-known side effect of cisplatin characterized by axonal damage. In the early stage of neurotoxicity, cisplatin affects proteins that modulate neurite outgrowth and neuroplasticity, without inducing mitochondrial damage or apoptosis. There are no preventive therapies for cisplatin-induced peripheral neuropathy; therefore, measures to improve axonal growth and connectivity would be beneficial. Caffeic acid phenethyl ester (CAPE) is a bioactive component of propolis with neurotrophic and neuroprotective activities. We have recently showed that CAPE protects against cisplatin-induced neurotoxicity by activating NGF high-affinity receptors (trkA) and inducing neuroplasticity. We have now assessed other potential early targets of cisplatin and additional mechanisms involved in the neuroprotection of CAPE. Cisplatin reduced axonal cytoskeletal proteins (F-actin and ß-III-tubulin) without inducing oxidative damage in PC12 cells. It also reduced energy-related proteins (AMPK α, p-AMPK α, and SIRT1) and glucose uptake. At this stage of neurotoxicity, glutamate excitotoxicity is not involved in the toxicity of cisplatin. CAPE attenuated the downregulation of the cytoskeleton and energy-related markers as well as SIRT1 and phosphorylated AMPK α. Moreover, the neuroprotective mechanism of CAPE also involves the activation of the neurotrophic signaling pathways MAPK/Erk and PI3k/Akt. The PI3K/Akt pathway is involved in the upregulation of SIRT1 induced by CAPE, but not in the upregulation of cytoskeletal proteins. Altogether, these findings suggest that the neuroprotective effect of CAPE against cisplatin-induced neurotoxicity involves both (a) a neurotrophic mechanism that mimics the mechanism triggered by the NGF itself and (b) a non-neurotrophic mechanism that upregulates the cytoskeletal proteins.


Assuntos
Ácidos Cafeicos/farmacologia , Cisplatino/toxicidade , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Álcool Feniletílico/análogos & derivados , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Células COS , Diferenciação Celular/efeitos dos fármacos , Chlorocebus aethiops , Proteínas do Citoesqueleto/metabolismo , Glucose/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neurônios/metabolismo , Células PC12 , Álcool Feniletílico/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA