Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 1026, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33589589

RESUMO

Proprioceptive neurons (PNs) are essential for the proper execution of all our movements by providing muscle sensory feedback to the central motor network. Here, using deep single cell RNAseq of adult PNs coupled with virus and genetic tracings, we molecularly identify three main types of PNs (Ia, Ib and II) and find that they segregate into eight distinct subgroups. Our data unveil a highly sophisticated organization of PNs into discrete sensory input channels with distinct spatial distribution, innervation patterns and molecular profiles. Altogether, these features contribute to finely regulate proprioception during complex motor behavior. Moreover, while Ib- and II-PN subtypes are specified around birth, Ia-PN subtypes diversify later in life along with increased motor activity. We also show Ia-PNs plasticity following exercise training, suggesting Ia-PNs are important players in adaptive proprioceptive function in adult mice.


Assuntos
Retroalimentação Sensorial/fisiologia , Gânglios Espinais/metabolismo , Neurônios Motores/metabolismo , Propriocepção/fisiologia , Células Receptoras Sensoriais/metabolismo , Animais , Calbindina 1/genética , Calbindina 1/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Gânglios Espinais/citologia , Expressão Gênica , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios Motores/classificação , Neurônios Motores/citologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Condicionamento Físico Animal , Células Receptoras Sensoriais/classificação , Células Receptoras Sensoriais/citologia , Análise de Célula Única , Medula Espinal/citologia , Medula Espinal/metabolismo
2.
Nat Commun ; 11(1): 4175, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32826903

RESUMO

Somatic sensation is defined by the existence of a diversity of primary sensory neurons with unique biological features and response profiles to external and internal stimuli. However, there is no coherent picture about how this diversity of cell states is transcriptionally generated. Here, we use deep single cell analysis to resolve fate splits and molecular biasing processes during sensory neurogenesis in mice. Our results identify a complex series of successive and specific transcriptional changes in post-mitotic neurons that delineate hierarchical regulatory states leading to the generation of the main sensory neuron classes. In addition, our analysis identifies previously undetected early gene modules expressed long before fate determination although being clearly associated with defined sensory subtypes. Overall, the early diversity of sensory neurons is generated through successive bi-potential intermediates in which synchronization of relevant gene modules and concurrent repression of competing fate programs precede cell fate stabilization and final commitment.


Assuntos
Neurogênese/genética , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/fisiologia , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Animais , Diferenciação Celular , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/fisiologia , Células-Tronco
3.
Cell Mol Life Sci ; 77(11): 2217-2233, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31440771

RESUMO

The molecular mechanisms that control the biosynthetic trafficking, surface delivery, and degradation of TrkA receptor are essential for proper nerve growth factor (NGF) function, and remain poorly understood. Here, we identify Tetraspanin1 (Tspan1) as a critical regulator of TrkA signaling and neuronal differentiation induced by NGF. Tspan1 is expressed by developing TrkA-positive dorsal root ganglion (DRG) neurons and its downregulation in sensory neurons inhibits NGF-mediated axonal growth. In addition, our data demonstrate that Tspan1 forms a molecular complex with the immature form of TrkA localized in the endoplasmic reticulum (ER). Finally, knockdown of Tspan1 reduces the surface levels of TrkA by promoting its preferential sorting towards the autophagy/lysosomal degradation pathway. Together, these data establish a novel homeostatic role of Tspan1, coordinating the biosynthetic trafficking and degradation of TrkA, regardless the presence of NGF.


Assuntos
Fator de Crescimento Neural/metabolismo , Neurogênese , Proteostase , Receptor trkA/metabolismo , Transdução de Sinais , Tetraspaninas/metabolismo , Animais , Feminino , Células HEK293 , Humanos , Masculino , Células PC12 , Ratos , Ratos Wistar
4.
Development ; 146(20)2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31575648

RESUMO

The control of all our motor outputs requires constant monitoring by proprioceptive sensory neurons (PSNs) that convey continuous muscle sensory inputs to the spinal motor network. Yet the molecular programs that control the establishment of this sensorimotor circuit remain largely unknown. The transcription factor RUNX3 is essential for the early steps of PSNs differentiation, making it difficult to study its role during later aspects of PSNs specification. Here, we conditionally inactivate Runx3 in PSNs after peripheral innervation and identify that RUNX3 is necessary for maintenance of cell identity of only a subgroup of PSNs, without discernable cell death. RUNX3 also controls the sensorimotor connection between PSNs and motor neurons at limb level, with muscle-by-muscle variable sensitivities to the loss of Runx3 that correlate with levels of RUNX3 in PSNs. Finally, we find that muscles and neurotrophin 3 signaling are necessary for maintenance of RUNX3 expression in PSNs. Hence, a transcriptional regulator that is crucial for specifying a generic PSN type identity after neurogenesis is later regulated by target muscle-derived signals to contribute to the specialized aspects of the sensorimotor connection selectivity.


Assuntos
Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Células Cultivadas , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Feminino , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Neurônios Motores/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Células Receptoras Sensoriais/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Nat Commun ; 10(1): 4137, 2019 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-31515492

RESUMO

Developmental cell death plays an important role in the construction of functional neural circuits. In vertebrates, the canonical view proposes a selection of the surviving neurons through stochastic competition for target-derived neurotrophic signals, implying an equal potential for neurons to compete. Here we show an alternative cell fitness selection of neurons that is defined by a specific neuronal heterogeneity code. Proprioceptive sensory neurons that will undergo cell death and those that will survive exhibit different molecular signatures that are regulated by retinoic acid and transcription factors, and are independent of the target and neurotrophins. These molecular features are genetically encoded, representing two distinct subgroups of neurons with contrasted functional maturation states and survival outcome. Thus, in this model, a heterogeneous code of intrinsic cell fitness in neighboring neurons provides differential competitive advantage resulting in the selection of cells with higher capacity to survive and functionally integrate into neural networks.


Assuntos
Modelos Biológicos , Células Receptoras Sensoriais/citologia , Animais , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Embrião de Galinha , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Camundongos Endogâmicos C57BL , Propriocepção/efeitos dos fármacos , Receptor trkC/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Tretinoína/farmacologia
6.
Cereb Cortex ; 28(1): 236-249, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27909004

RESUMO

The proper formation and morphogenesis of dendrites is essential to the establishment of neuronal connectivity. We report that 2 members of the Pea3 family of transcription factors, Etv4 and Etv5, are expressed in hippocampal neurons during the main period of dendritogenesis, suggesting that they have a function in dendrite development. Here, we show that these transcription factors are physiological regulators of growth and arborization of pyramidal cell dendrites in the developing hippocampus. Gain and loss of function assays indicate that Etv4 and Etv5 are required for proper development of hippocampal dendritic arbors and spines. We have found that in vivo deletion of either Etv4 or Etv5 in hippocampal neurons causes deficits in dendrite size and complexity, which are associated with impaired cognitive function. Additionally, our data support the idea that Etv4 and Etv5 are part of a brain-derived neurotrophic factor-mediated transcriptional program required for proper hippocampal dendrite connectivity and plasticity.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Dendritos/metabolismo , Hipocampo/metabolismo , Proteínas Proto-Oncogênicas c-ets/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Cognição/fisiologia , Proteínas de Ligação a DNA/genética , Hipocampo/crescimento & desenvolvimento , Camundongos Transgênicos , Crescimento Neuronal/fisiologia , Plasticidade Neuronal/fisiologia , Células PC12 , Proteínas Proto-Oncogênicas c-ets/genética , Ratos , Fatores de Transcrição/genética
7.
J Neurosci ; 33(40): 15940-51, 2013 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-24089499

RESUMO

Nerve growth factor (NGF) is a target-derived neurotrophic growth factor that controls many aspects of sensory and sympathetic neuronal development. The identification of transcription factors and downstream target genes that mediate NGF-dependent neuronal differentiation and target field innervation is currently a major challenge. Here, we show that the Pea3 transcription factor family members Etv4 and Etv5 are expressed by developing TrkA-positive dorsal root ganglion (DRG) neurons during the period of target innervation. Real-time PCR assays indicated that Etv4 and Etv5 mRNAs are significantly induced by NGF in different neuronal cells, suggesting that they could be involved in the biological responses induced by this neurotrophin. Interestingly, distal axon application of NGF in compartmentalized cultures of rat DRG sensory neurons was sufficient to induce a significant increase in Etv4 and Etv5 mRNA expression. Pharmacological assays also revealed that activation of MEK/ERK (MAPK) pathway is required for Etv4 and Etv5 gene induction in response to NGF. Downregulation of Etv4 and Etv5 using small interference RNA knockdown experiments inhibited NGF-induced neurite outgrowth of rat sensory neurons, while overexpression of full-length Etv4 or Etv5 potentiated neuronal differentiation in response to this neurotrophin. Together, these data establish Etv4 and Etv5 as essential molecules of the transcriptional program linking neurotrophin signaling to sensory neuronal differentiation, and suggest that they can be involved in NGF-mediated target innervation.


Assuntos
Axônios/metabolismo , Proteínas de Ligação a DNA/metabolismo , Gânglios Espinais/metabolismo , Fator de Crescimento Neural/farmacologia , Células Receptoras Sensoriais/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Axônios/efeitos dos fármacos , Embrião de Galinha , Proteínas de Ligação a DNA/genética , Gânglios Espinais/efeitos dos fármacos , Células PC12 , Ratos , Ratos Wistar , Células Receptoras Sensoriais/efeitos dos fármacos , Transativadores/genética , Fatores de Transcrição/genética
8.
PLoS One ; 7(2): e32087, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22384148

RESUMO

The Sprouty (Spry) family of proteins represents endogenous regulators of downstream signaling pathways induced by receptor tyrosine kinases (RTKs). Using real time PCR, we detect a significant increase in the expression of Spry4 mRNA in response to NGF, indicating that Spry4 could modulate intracellular signaling pathways and biological processes induced by NGF and its receptor TrkA. In this work, we demonstrate that overexpression of wild-type Spry4 causes a significant reduction in MAPK and Rac1 activation and neurite outgrowth induced by NGF. At molecular level, our findings indicate that ectopic expression of a mutated form of Spry4 (Y53A), in which a conserved tyrosine residue was replaced, fail to block both TrkA-mediated Erk/MAPK activation and neurite outgrowth induced by NGF, suggesting that an intact tyrosine 53 site is required for the inhibitory effect of Spry4 on NGF signaling. Downregulation of Spry4 using small interference RNA knockdown experiments potentiates PC12 cell differentiation and MAPK activation in response to NGF. Together, these findings establish a new physiological mechanism through which Spry4 regulates neurite outgrowth reducing not only the MAPK pathway but also restricting Rac1 activation in response to NGF.


Assuntos
Fator de Crescimento Neural/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Receptor trkA/metabolismo , Animais , Células COS , Linhagem Celular Tumoral , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Mutação , Células PC12 , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real/métodos , Transdução de Sinais , Tirosina/química , Proteínas rac1 de Ligação ao GTP/metabolismo
9.
Exp Neurol ; 229(2): 364-71, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21414313

RESUMO

Prenatal ethanol exposure (PEE) induces morphologic and functional alterations in the developing central nervous system. The orderly migration of neuroblasts is a key process in the development of a layered structure such as the cerebral cortex (CC). From initial stages of corticogenesis, the transcription factor Pax6 is intensely expressed in neuroepithelial and radial glia cells (RGCs) and is involved in continual regulation of cell surface properties responsible for both cellular identity and radial migration. In the present work, one month before mating, during pregnancy and lactation, a group of female Wistar rats were fed a liquid diet with 5.9% (w/w) ethanol (EtOH), rendering moderate blood EtOH concentrations. Maternal gestational weight progression and fetal CC thickness were measured. CC from E12-P3 rats were examined for expression of vimentin, nestin, S-100b, Pax6 and doublecortin using immunohistochemical assays. RGCs expressing vimentin, nestin, S-100b and Pax6 had abnormal morphologies. The migration distance through the CC and the number of doublecortin-ir neuroblasts in germinative zones were decreased. We found significant morphologic defects on RGCs, a marked delay in neuronal migration, decreased numbers of neuroblasts, and decreased numbers of Pax6-ir cells in the CC as a consequence of exposure to ethanol during development. These observations suggest a sequence of toxic events that contribute to cortical dysplasia in offspring exposed to EtOH during gestation.


Assuntos
Encéfalo/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Etanol/farmacologia , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal , Análise de Variância , Animais , Encéfalo/citologia , Encéfalo/fisiologia , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Proteínas do Olho/metabolismo , Feminino , Imunofluorescência , Proteínas de Homeodomínio/metabolismo , Imuno-Histoquímica , Proteínas de Filamentos Intermediários/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Nestina , Neuroglia/fisiologia , Neurônios/fisiologia , Neuropeptídeos/metabolismo , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/metabolismo , Gravidez , Ratos , Ratos Wistar , Proteínas Repressoras/metabolismo , Vimentina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA