Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38045262

RESUMO

The mucus lining of the human airway epithelium contains two gel-forming mucins, MUC5B and MUC5AC. During progression of cystic fibrosis (CF), mucus hyper-concentrates as its mucin ratio changes, coinciding with formation of insoluble, dense mucus flakes. We explore rheological heterogeneity of this pathology with reconstituted mucus matching three stages of CF progression and particle-tracking of 200 nm and 1 micron diameter beads. We introduce statistical data analysis methods specific to low signal-to-noise data within flakes. Each bead time series is decomposed into: (i) a fractional Brownian motion (fBm) classifier of the pure time-series signal; (ii) high-frequency static and dynamic noise; and (iii) low-frequency deterministic drift. Subsequent analysis focuses on the denoised fBm classifier ensemble from each mucus sample and bead diameter. Every ensemble fails a homogeneity test, compelling clustering methods to assess levels of heterogeneity. The first binary level detects beads within vs. outside flakes. A second binary level detects within-flake bead signals that can vs. cannot be disentangled from the experimental noise floor. We show all denoised ensembles, within- and outside-flakes, fail a homogeneity test, compelling additional clustering; next, all clusters with sufficient data fail a homogeneity test. These levels of heterogeneity are consistent with outcomes from a stochastic phase-separation process, and dictate applying the generalized Stokes-Einstein relation to each bead per cluster per sample, then frequency-domain averaging to assess rheological heterogeneity. Flakes exhibit a spectrum of gel-like and sol-like domains, outside-flake solutions a spectrum of sol-like domains, painting a rheological signature of the phase-separation process underlying flake-burdened mucus.

2.
J Cyst Fibros ; 21(6): 959-966, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35437233

RESUMO

BACKGROUND: Mucus hyperconcentration in cystic fibrosis (CF) lung disease is marked by increases in both mucin and DNA concentration. Additionally, it has been shown that half of the mucins present in bronchial alveolar lavage fluid (BALF) from preschool-aged CF patients are present in as non-swellable mucus flakes. This motivates us to examine the utility of mucus flakes, as well as mucin and DNA concentrations in BALF as markers of infection and inflammation in CF airway disease. METHODS: In this study, we examined the mucin and DNA concentration, as well as mucus flake abundance, composition, and biophysical properties in BALF from three groups; healthy adult controls, and two CF cohorts, one preschool aged and the other school aged. BALFs were characterized via refractometry, PicoGreen, immunofluorescence microscopy, particle tracking microrheology, and fluorescence image tiling. RESULTS: Mucin and DNA BALF concentrations increased progressively from healthy young adult controls to preschool-aged people and school-aged people with CF. Notably, mucin concentrations were increased in bronchoalveolar lavage fluid (BALF) from preschool-aged patients with CF prior to decreased pulmonary function. Infrequent small mucus flakes were identified in normal subjects. A progressive increase in the abundance of mucus flakes in preschool and school-aged CF patients was observed. Compositionally, MUC5B dominated flakes from normal subjects, whereas an increase in MUC5AC was observed in people with CF, reflected in a reduced flaked MUC5B/MUC5AC mucin ratio. CONCLUSION: These findings suggest mucus composition and flake properties are useful markers of inflammatory and infection-based changes in CF airways.


Assuntos
Fibrose Cística , Adulto Jovem , Humanos , Pré-Escolar , Criança , Muco , Mucina-5AC , Sistema Respiratório , Biomarcadores , DNA
3.
Stud Appl Math ; 147(4): 1369-1387, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35221375

RESUMO

We develop the first molecular dynamics model of airway mucus based on the detailed physical properties and chemical structure of the predominant gel-forming mucin MUC5B. Our airway mucus model leverages the LAMMPS open-source code [https://lammps.sandia.gov], based on the statistical physics of polymers, from single molecules to networks. On top of the LAMMPS platform, the chemical structure of MUC5B is used to superimpose proximity-based, non-covalent, transient interactions within and between the specific domains of MUC5B polymers. We explore feasible ranges of hydrophobic and electrostatic interaction strengths between MUC5B domains with 9 nanometer spatial and 1 nanosecond temporal resolution. Our goal here is to propose and test a mechanistic hypothesis for a striking clinical observation with respect to airway mucus: a 10-fold increase in non-swellable, dense structures called flakes during progression of cystic fibrosis disease. Among the myriad possible effects that might promote self-organization of MUC5B networks into flake structures, we hypothesize and confirm that the clinically confirmed increase in mucin concentration, from 1.5 to 5 mg/mL, alone is sufficient to drive the structure changes observed with scanning electron microscopy images from experimental samples. We post-process the LAMMPS simulated datasets at 1.5 and 5 mg/mL, both to image the structure transition and compare with scanning electron micrographs and to show that the 3.33-fold increase in concentration induces closer proximity of interacting electrostatic and hydrophobic domains, thereby amplifying the proximity-based strength of the interactions.

4.
Nucleic Acids Res ; 48(20): 11284-11303, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33080019

RESUMO

The revolution in understanding higher order chromosome dynamics and organization derives from treating the chromosome as a chain polymer and adapting appropriate polymer-based physical principles. Using basic principles, such as entropic fluctuations and timescales of relaxation of Rouse polymer chains, one can recapitulate the dominant features of chromatin motion observed in vivo. An emerging challenge is to relate the mechanical properties of chromatin to more nuanced organizational principles such as ubiquitous DNA loops. Toward this goal, we introduce a real-time numerical simulation model of a long chain polymer in the presence of histones and condensin, encoding physical principles of chromosome dynamics with coupled histone and condensin sources of transient loop generation. An exact experimental correlate of the model was obtained through analysis of a model-matching fluorescently labeled circular chromosome in live yeast cells. We show that experimentally observed chromosome compaction and variance in compaction are reproduced only with tandem interactions between histone and condensin, not from either individually. The hierarchical loop structures that emerge upon incorporation of histone and condensin activities significantly impact the dynamic and structural properties of chromatin. Moreover, simulations reveal that tandem condensin-histone activity is responsible for higher order chromosomal structures, including recently observed Z-loops.


Assuntos
Adenosina Trifosfatases/metabolismo , Centrômero/metabolismo , Cromatina/metabolismo , Cromossomos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Simulação de Dinâmica Molecular , Complexos Multiproteicos/metabolismo , Saccharomyces cerevisiae/genética , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Alelos , Cromatina/química , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos/química , Biologia Computacional , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histonas/química , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Mutação , Nucleossomos/química , Nucleossomos/metabolismo , Polímeros/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Termodinâmica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
J Control Release ; 311-312: 138-146, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31454530

RESUMO

Antibodies that specifically bind polyethylene glycol (PEG), i.e. anti-PEG antibodies (APA), are associated with reduced efficacy and increased risk of serious adverse events for several PEGylated therapeutics. Here, we explored the concept of using free PEG molecules to saturate circulating APA. Surprisingly, we found that 40 kDa free PEG effectively restored the prolonged circulation of PEGylated liposomes in the presence of high titers of pre-existing APA for at least 48 h in mice. In contrast, lower molecular weight free PEG (≤10 kDa) failed to restore circulation beyond a few hours. These in vivo results were consistent with estimates from a minimal physiologically based pharmacokinetic model. Importantly, the infusion of free PEG appeared to be safe in mice previously sensitized by injection of PEGylated liposomes, and free PEG did not elicit excess APA production even in mice with pre-existing adaptive immunity against PEG. Our results support further investigation of high molecular weight free PEG as a potential method to control and overcome high titers of APA, restoring the prolonged circulation of PEGylated liposomes and possibly other PEGylated therapeutics.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Anticorpos/imunologia , Doxorrubicina/administração & dosagem , Polietilenoglicóis/administração & dosagem , Administração Intravenosa , Animais , Antibióticos Antineoplásicos/farmacocinética , Doxorrubicina/farmacocinética , Feminino , Lipossomos , Fígado/metabolismo , Camundongos Endogâmicos BALB C , Peso Molecular , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética
6.
Sci Transl Med ; 11(486)2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30944166

RESUMO

Although destructive airway disease is evident in young children with cystic fibrosis (CF), little is known about the nature of the early CF lung environment triggering the disease. To elucidate early CF pulmonary pathophysiology, we performed mucus, inflammation, metabolomic, and microbiome analyses on bronchoalveolar lavage fluid (BALF) from 46 preschool children with CF enrolled in the Australian Respiratory Early Surveillance Team for Cystic Fibrosis (AREST CF) program and 16 non-CF disease controls. Total airway mucins were elevated in CF compared to non-CF BALF irrespective of infection, and higher densities of mucus flakes containing mucin 5B and mucin 5AC were observed in samples from CF patients. Total mucins and mucus flakes correlated with inflammation, hypoxia, and oxidative stress. Many CF BALFs appeared sterile by culture and molecular analyses, whereas other samples exhibiting bacterial taxa associated with the oral cavity. Children without computed tomography-defined structural lung disease exhibited elevated BALF mucus flakes and neutrophils, but little/no bacterial infection. Although CF mucus flakes appeared "permanent" because they did not dissolve in dilute BALF matrix, they could be solubilized by a previously unidentified reducing agent (P2062), but not N-acetylcysteine or deoxyribonuclease. These findings indicate that early CF lung disease is characterized by an increased mucus burden and inflammatory markers without infection or structural lung disease and suggest that mucolytic and anti-inflammatory agents should be explored as preventive therapy.


Assuntos
Fibrose Cística/microbiologia , Fibrose Cística/patologia , Pulmão/metabolismo , Pulmão/patologia , Muco/metabolismo , Animais , Biomarcadores/metabolismo , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Inflamação/patologia , Pulmão/microbiologia , Masculino , Microbiota , Ovinos
7.
Eur Respir J ; 52(6)2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30361244

RESUMO

Cystic fibrosis (CF) is a recessive genetic disease that is characterised by airway mucus plugging and reduced mucus clearance. There are currently alternative hypotheses that attempt to describe the abnormally viscous and elastic mucus that is a hallmark of CF airways disease, including: 1) loss of CF transmembrane regulator (CFTR)-dependent airway surface volume (water) secretion, producing mucus hyperconcentration-dependent increased viscosity, and 2) impaired bicarbonate secretion by CFTR, producing acidification of airway surfaces and increased mucus viscosity.A series of experiments was conducted to determine the contributions of mucus concentration versus pH to the rheological properties of airway mucus across length scales from the nanoscopic to macroscopic.For length scales greater than the nanoscopic, i.e. those relevant to mucociliary clearance, the effect of mucus concentration dominated over the effect of airway acidification.Mucus hydration and chemical reduction of disulfide bonds that connect mucin monomers are more promising therapeutic approaches than alkalisation.


Assuntos
Fibrose Cística/metabolismo , Depuração Mucociliar , Muco/metabolismo , Adolescente , Adulto , Fibrose Cística/fisiopatologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Feminino , Humanos , Concentração de Íons de Hidrogênio , Imuno-Histoquímica , Masculino , Microscopia de Fluorescência , Pessoa de Meia-Idade , Sistema Respiratório/fisiopatologia , Reologia , Escarro/metabolismo , Adulto Jovem
8.
J Aerosol Med Pulm Drug Deliv ; 30(5): 299-321, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28277892

RESUMO

BACKGROUND: Aerosol delivery of chemotherapeutic nanocarriers represents a promising alternative for lung cancer therapy. This study optimized gemcitabine (Gem)-loaded gelatin nanocarriers (GNCs) cross-linked with genipin (Gem-GNCs) to evaluate their potential for nebulized lung cancer treatment. METHODS: Gem-GNCs were prepared by two-step desolvation and optimized through Taguchi design and characterized for physicochemical properties. Particle size and morphology were confirmed by scanning and transmission electron microscopy. In vitro release of Gem from Gem-GNCs performed in Dulbecco's phosphate-buffered saline and simulated lung fluid was evaluated to determine release mechanisms. Particle size stability was assessed under varying pH. Differential scanning calorimetry and powder X-ray diffraction were used to determine the presence and stability of Gem-GNC components and amorphization of Gem, respectively. Gem-GNC efficacy within A549 and H460 cells was evaluated using MTT assays. Mucus rheology upon treatment with Gem-GNCs, lactose, and normal saline control was measured. Andersen cascade impaction identified the aerodynamic particle size distribution of the nebulized formulation. RESULTS: Gem-GNCs had particle size, zeta potential, entrapment efficiency, and loading efficiency of 178 ± 7.1 nm, -18.9 mV, 92.5%, and 9.1%, respectively. The Gem and formulation excipients where molecularly dispersed and configured amorphously. Gem-GNCs were stable at pH 5.4-7.4 for 72 hours. Gem release from Gem-GNCs was governed by non-Fickian controlled release due to diffusion/erosion from a matrix-based nanocarrier. Gem-GNCs elicited a 40% reduction of the complex viscosity η*(1 Hz) of human bronchial epithelial cell mucus containing 3 wt% solids to mimic mild airway disease. The nebulized Gem-GNCs had a mass median aerodynamic diameter (MMAD) of 2.0 ± 0.16 µm, geometric standard deviation (GSD) of 2.7 ± 0.16, and fine particle fraction (FPF) of 75.2% ± 2.4%. The Gem-GNC formulation did not outperform the Gem solution in A549 cells. However, in H460, Gem-GNCs outperformed the Gem IC50 reduction by ∼5-fold at 48 and 10-fold 72 hours. CONCLUSION: Stable, effective, and sustained-release Gem-GNCs were developed. The nebulized Gem-GNCs had satisfactory MMAD, GSD, and FPF and the formulation reduced the dynamic complex viscosity of mucus consistent with increased mobility of nanoparticles.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Desoxicitidina/análogos & derivados , Sistemas de Liberação de Medicamentos , Neoplasias Pulmonares/tratamento farmacológico , Células A549 , Administração por Inalação , Aerossóis , Varredura Diferencial de Calorimetria , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Química Farmacêutica/métodos , Preparações de Ação Retardada , Desoxicitidina/administração & dosagem , Desoxicitidina/química , Desoxicitidina/farmacologia , Liberação Controlada de Fármacos , Gelatina , Humanos , Neoplasias Pulmonares/patologia , Nanopartículas , Tamanho da Partícula , Viscosidade , Difração de Raios X , Gencitabina
9.
ACS Nano ; 10(10): 9243-9258, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27666558

RESUMO

The binding site barrier (BSB) was originally proposed to describe the binding behavior of antibodies to cells peripheral to blood vessels, preventing their further penetration into the tumors. Yet, it is revisited herein to describe the intratumoral cellular disposition of nanoparticles (NPs). Specifically, the BSB limits NP diffusion and results in unintended internalization of NPs by stroma cells localized near blood vessels. This not only limits the therapeutic outcome but also promotes adverse off-target effects. In the current study, it was shown that tumor-associated fibroblast cells (TAFs) are the major component of the BSB, particularly in tumors with a stroma-vessel architecture where the location of TAFs aligns with blood vessels. Specifically, TAF distance to blood vessels, expression of receptor proteins, and binding affinity affect the intensity of the BSB. The physical barrier elicited by extracellular matrix also prolongs the retention of NPs in the stroma, potentially contributing to the BSB. The influence of particle size on the BSB was also investigated. The strongest BSB effect was found with small (∼18 nm) NPs targeted with the anisamide ligand. The uptake of these NPs by TAFs was about 7-fold higher than that of the other cells 16 h post-intravenous injection. This was because TAFs also expressed the sigma receptor under the influence of TGF-ß secreted by the tumor cells. Overall, the current study underscores the importance of BSBs in the delivery of nanotherapeutics and provides a rationale for exploiting BSBs to target TAFs.

10.
PLoS Comput Biol ; 12(8): e1004872, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27494700

RESUMO

A multi-mode nonlinear constitutive model for mucus is constructed directly from micro- and macro-rheology experimental data on cell culture mucus, and a numerical algorithm is developed for the culture geometry and idealized cilia driving conditions. This study investigates the roles that mucus rheology, wall effects, and HBE culture geometry play in the development of flow profiles and the shape of the air-mucus interface. Simulations show that viscoelasticity captures normal stress generation in shear leading to a peak in the air-mucus interface at the middle of the culture and a depression at the walls. Linear and nonlinear viscoelastic regimes can be observed in cultures by varying the hurricane radius and mean rotational velocity. The advection-diffusion of a drug concentration dropped at the surface of the mucus flow is simulated as a function of Peclet number.


Assuntos
Brônquios/citologia , Células Epiteliais/citologia , Modelos Biológicos , Muco/fisiologia , Algoritmos , Células Cultivadas , Cílios/fisiologia , Biologia Computacional , Simulação por Computador , Elasticidade , Humanos , Dinâmica não Linear , Viscosidade
11.
PLoS One ; 10(7): e0131351, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26132216

RESUMO

Secretory immunoglobulin A (sIgA), a dimeric antibody found in high quantities in the gastrointestinal mucosa, is broadly associated with mucosal immune protection. A distinguishing feature of sIgA is its ability to crosslink pathogens, thereby creating pathogen/sIgA aggregates that are too large to traverse the dense matrix of mucin fibers in mucus layers overlying epithelial cells and consequently reducing infectivity. Here, we use modeling to investigate this mechanism of "immune exclusion" based on sIgA-mediated agglutination, in particular the potential use of sIgA to agglutinate HIV in cervicovaginal mucus (CVM) and prevent HIV transmission. Utilizing reported data on HIV diffusion in CVM and semen, we simulate HIV collision kinetics in physiologically-thick mucus layers-a necessary first step for sIgA-induced aggregation. We find that even at the median HIV load in semen of acutely infected individuals possessing high viral titers, over 99% of HIV virions will penetrate CVM and reach the vaginal epithelium without colliding with another virion. These findings imply that agglutination is unlikely to be the dominant mechanism of sIgA-mediated protection against HIV or other sexually transmitted pathogens. Rather, we surmise that agglutination is most effective against pathogens either present at exceedingly high concentrations or that possess motility mechanisms other than Brownian diffusion that significantly enhance encounter rates.


Assuntos
Colo do Útero/virologia , HIV/fisiologia , Imunoglobulina A Secretora/fisiologia , Muco/virologia , Vagina/virologia , Vírion/fisiologia , Aglutinação/imunologia , Aglutinação/fisiologia , Colo do Útero/imunologia , Colo do Útero/fisiologia , Feminino , HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/transmissão , Humanos , Modelos Biológicos , Muco/imunologia , Muco/fisiologia , Sêmen/virologia , Vagina/imunologia , Vagina/fisiologia , Carga Viral/imunologia , Carga Viral/fisiologia
12.
Soft Matter ; 11(32): 6393-402, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26169540

RESUMO

Large-scale simulations by the authors of the kinetic-hydrodynamic equations for active polar nematics revealed a variety of spatio-temporal attractors, including steady and unsteady, banded (1d) and cellular (2d) spatial patterns. These particle scale activation-induced attractors arise at dilute nanorod volume fractions where the passive equilibrium phase is isotropic, whereas all previous model simulations have focused on the semi-dilute, nematic equilibrium regime and mostly on low-moment orientation tensor and polarity vector models. Here we extend our previous results to complete attractor phase diagrams for active nematics, with and without an explicit polar potential, to map out novel spatial and dynamic transitions, and to identify some new attractors, over the parameter space of dilute nanorod volume fraction and nanorod activation strength. The particle-scale activation parameter corresponds experimentally to a tunable force dipole strength (so-called pushers with propulsion from the rod tail) generated by active rod macromolecules, e.g., catalysis with the solvent phase, ATP-induced propulsion, or light-activated propulsion. The simulations allow 2d spatial variations in all flow and orientational variables and full spherical orientational degrees of freedom; the attractors correspond to numerical integration of a coupled system of 125 nonlinear PDEs in 2d plus time. The phase diagrams with and without the polar interaction potential are remarkably similar, implying that polar interactions among the rodlike particles are not essential to long-range spatial and temporal correlations in flow, polarity, and nematic order. As a general rule, above a threshold, low volume fractions induce 1d banded patterns, whereas higher yet still dilute volume fractions yield 2d patterns. Again as a general rule, varying activation strength at fixed volume fraction induces novel dynamic transitions. First, stationary patterns saturate the instability of the isotropic state, consisting of discrete 1d banded or 2d cellular patterns depending on nanorod volume fraction. Increasing activation strength further induces a sequence of attractor bifurcations, including oscillations superimposed on the 1d and 2d stationary patterns, a uniform translational motion of 1d and 2d oscillating patterns, and periodic switching between 1d and 2d patterns. These results imply that active macromolecular suspensions are capable of long-range spatial and dynamic organization at isotropic equilibrium concentrations, provided particle-scale activation is sufficiently strong.


Assuntos
Hidrodinâmica , Cristais Líquidos/química , Nanotubos/química , Trifosfato de Adenosina/química , Movimento (Física) , Suspensões/química
13.
PLoS One ; 10(5): e0127267, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26024524

RESUMO

Airway mucin secretion studies have focused on goblet cell responses to exogenous agonists almost to the exclusion of baseline mucin secretion (BLMS). In human bronchial epithelial cell cultures (HBECCs), maximal agonist-stimulated secretion exceeds baseline by ~3-fold as measured over hour-long periods, but mucin stores are discharged completely and require 24 h for full restoration. Hence, over 24 h, total baseline exceeds agonist-induced secretion by several-fold. Studies with HBECCs and mouse tracheas showed that BLMS is highly sensitive to mechanical stresses. Harvesting three consecutive 1 h baseline luminal incubations with HBECCs yielded equal rates of BLMS; however, lengthening the middle period to 72 h decreased the respective rate significantly, suggesting a stimulation of BLMS by the gentle washes of HBECC luminal surfaces. BLMS declined exponentially after washing HBECCs (t1/2 = 2.75 h), to rates approaching zero. HBECCs exposed to low perfusion rates exhibited spike-like increases in BLMS when flow was jumped 5-fold: BLMS increased >4 fold, then decreased within 5 min to a stable plateau at 1.5-2-fold over control. Higher flow jumps induced proportionally higher BLMS increases. Inducing mucous hyperplasia in HBECCs increased mucin production, BLMS and agonist-induced secretion. Mouse tracheal BLMS was ~6-fold higher during perfusion, than when flow was stopped. Munc13-2 null mouse tracheas, with their defect of accumulated cellular mucins, exhibited similar BLMS as WT, contrary to predictions of lower values. Graded mucous metaplasia induced in WT and Munc13-2 null tracheas with IL-13, caused proportional increases in BLMS, suggesting that naïve Munc13-2 mouse BLMS is elevated by increased mucin stores. We conclude that BLMS is, [i] a major component of mucin secretion in the lung, [ii] sustained by the mechanical activity of a dynamic lung, [iii] proportional to levels of mucin stores, and [iv] regulated differentially from agonist-induced mucin secretion.


Assuntos
Brônquios/metabolismo , Células Caliciformes/metabolismo , Mucinas/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Brônquios/citologia , Brônquios/efeitos dos fármacos , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Caliciformes/efeitos dos fármacos , Humanos , Camundongos , Estresse Mecânico , Fatores de Tempo , Traqueia/efeitos dos fármacos , Traqueia/metabolismo
14.
PLoS One ; 9(2): e87681, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24558372

RESUMO

In human airways diseases, including cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD), host defense is compromised and airways inflammation and infection often result. Mucus clearance and trapping of inhaled pathogens constitute key elements of host defense. Clearance rates are governed by mucus viscous and elastic moduli at physiological driving frequencies, whereas transport of trapped pathogens in mucus layers is governed by diffusivity. There is a clear need for simple and effective clinical biomarkers of airways disease that correlate with these properties. We tested the hypothesis that mucus solids concentration, indexed as weight percent solids (wt%), is such a biomarker. Passive microbead rheology was employed to determine both diffusive and viscoelastic properties of mucus harvested from human bronchial epithelial (HBE) cultures. Guided by sputum from healthy (1.5-2.5 wt%) and diseased (COPD, CF; 5 wt%) subjects, mucus samples were generated in vitro to mimic in vivo physiology, including intermediate range wt% to represent disease progression. Analyses of microbead datasets showed mucus diffusive properties and viscoelastic moduli scale robustly with wt%. Importantly, prominent changes in both biophysical properties arose at ∼4 wt%, consistent with a gel transition (from a more viscous-dominated solution to a more elastic-dominated gel). These findings have significant implications for: (1) penetration of cilia into the mucus layer and effectiveness of mucus transport; and (2) diffusion vs. immobilization of micro-scale particles relevant to mucus barrier properties. These data provide compelling evidence for mucus solids concentration as a baseline clinical biomarker of mucus barrier and clearance functions.


Assuntos
Biomarcadores/metabolismo , Fibrose Cística/diagnóstico , Muco/fisiologia , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Adulto , Idoso , Fibrose Cística/metabolismo , Difusão , Progressão da Doença , Elasticidade , Análise de Fourier , Géis , Humanos , Pessoa de Meia-Idade , Modelos Estatísticos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Reprodutibilidade dos Testes , Sistema Respiratório/fisiopatologia , Reologia , Escarro , Viscosidade , Adulto Jovem
15.
J Cell Biol ; 203(3): 407-16, 2013 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-24189271

RESUMO

The mitotic segregation apparatus composed of microtubules and chromatin functions to faithfully partition a duplicated genome into two daughter cells. Microtubules exert extensional pulling force on sister chromatids toward opposite poles, whereas pericentric chromatin resists with contractile springlike properties. Tension generated from these opposing forces silences the spindle checkpoint to ensure accurate chromosome segregation. It is unknown how the cell senses tension across multiple microtubule attachment sites, considering the stochastic dynamics of microtubule growth and shortening. In budding yeast, there is one microtubule attachment site per chromosome. By labeling several chromosomes, we find that pericentromeres display coordinated motion and stretching in metaphase. The pericentromeres of different chromosomes exhibit physical linkage dependent on centromere function and structural maintenance of chromosomes complexes. Coordinated motion is dependent on condensin and the kinesin motor Cin8, whereas coordinated stretching is dependent on pericentric cohesin and Cin8. Linking of pericentric chromatin through cohesin, condensin, and kinetochore microtubules functions to coordinate dynamics across multiple attachment sites.


Assuntos
Centrômero/metabolismo , Segregação de Cromossomos/genética , Microtúbulos/metabolismo , Saccharomyces cerevisiae/genética , Fuso Acromático/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromátides , Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Cinesinas/metabolismo , Cinetocoros , Mitose/genética , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico , Coesinas
16.
J Theor Biol ; 325: 42-51, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23415939

RESUMO

We develop a proof-of-principle model for auto-regulation of water volume in the lung airway surface layer (ASL) by coupling biochemical kinetics, transient ASL volume, and homeostatic mechanical stresses. The model is based on the hypothesis that ASL volume is sensed through soluble mediators and phasic stresses generated by beating cilia and air drag forces. Model parameters are fit based on the available data on human bronchial epithelial cell cultures. Simulations then demonstrate that homeostatic volume regulation is a natural consequence of the processes described. The model maintains ASL volume within a physiological range that modulates with phasic stress frequency and amplitude. Next, we show that the model successfully reproduces the responses of cell cultures to significant isotonic and hypotonic challenges, and to hypertonic saline, an effective therapy for mucus hydration in cystic fibrosis patients. These results compel an advanced airway hydration model with therapeutic value that will necessitate detailed kinetics of multiple molecular pathways, feedback to ASL viscoelasticity properties, and stress signaling from the ASL to the cilia and epithelial cells.


Assuntos
Homeostase/fisiologia , Pulmão/fisiologia , Modelos Biológicos , Mucosa Respiratória/fisiologia , Água Corporal/fisiologia , Cílios/fisiologia , Elasticidade , Humanos , Muco/fisiologia , Estresse Mecânico , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA