Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 284(8): 4936-43, 2009 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-19054771

RESUMO

Cadmium poses a significant threat to human health due to its toxicity. In mammals and in bakers' yeast, cadmium is detoxified by ATP-binding cassette transporters after conjugation to glutathione. In fission yeast, phytochelatins constitute the co-substrate with cadmium for the transporter SpHMT1. In plants, a detoxification mechanism similar to the one in fission yeast is supposed, but the molecular nature of the transporter is still lacking. To investigate further the relationship between SpHMT1 and its co-substrate, we overexpressed the transporter in a Schizosaccharomyces pombe strain deleted for the phytochelatin synthase gene and heterologously in Saccharomyces cerevisiae and in Escherichia coli. In all organisms, overexpression of SpHMT1 conferred a markedly enhanced tolerance to cadmium but not to Sb(III), AgNO(3), As(III), As(V), CuSO(4), or HgCl(2). Abolishment of the catalytic activity by expression of SpHMT1(K623M) mutant suppressed the cadmium tolerance phenotype independently of the presence of phytochelatins. Depletion of the glutathione pool inhibited the SpHMT1 activity but not that of AtHMA4, a P-type ATPase, indicating that GSH is necessary for the SpHMT1-mediated cadmium resistance. In E. coli, SpHMT1 was targeted to the periplasmic membrane and led to an increased amount of cadmium in the periplasm. These results demonstrate that SpHMT1 confers cadmium tolerance in the absence of phytochelatins but depending on the presence of GSH and ATP. Our results challenge the dogma of the two separate cadmium detoxification pathways and demonstrate that a common highly conserved mechanism has been selected during the evolution from bacteria to humans.


Assuntos
Trifosfato de Adenosina/metabolismo , Cádmio/farmacologia , Farmacorresistência Fúngica/fisiologia , Glutationa/metabolismo , Fitoquelatinas , Schizosaccharomyces/metabolismo , Transportadores de Cassetes de Ligação de ATP , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/genética , Substituição de Aminoácidos , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Animais , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Quelantes , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Técnicas de Inativação de Genes , Glutationa/genética , Humanos , Mutação de Sentido Incorreto , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética
2.
BMC Plant Biol ; 8: 22, 2008 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-18307782

RESUMO

BACKGROUND: ABC proteins constitute one of the largest families of transporters found in all living organisms. In Arabidopsis thaliana, 120 genes encoding ABC transporters have been identified. Here, the characterization of one member of the MRP subclass, AtMRP6, is described. RESULTS: This gene, located on chromosome 3, is bordered by AtMRP3 and AtMRP7. Using real-time quantitative PCR (RT-Q-PCR) and the GUS reporter gene, we found that this gene is essentially expressed during early seedling development, in the apical meristem and at initiation point of secondary roots, especially in xylem-opposite pericycle cells where lateral roots initiate. The level of expression of AtMRP6 in response to various stresses was explored and a significant up-regulation after cadmium (Cd) treatment was detected. Among the three T-DNA insertion lines available from the Salk Institute library, two knock-out mutants, Atmrp6.1 and Atmrp6.2 were invalidated for the AtMRP6 gene. In the presence of Cd, development of leaves was more affected in the mutants than wild-type plants, whereas root elongation and ramification was comparable. CONCLUSION: The position of AtMRP6 on chromosome 3, flanked by two other MRP genes, (all of which being induced by Cd) suggests that AtMRP6 is part of a cluster involved in metal tolerance, although additional functions in planta cannot be discarded.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cádmio/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Plântula/crescimento & desenvolvimento , Regulação para Cima/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Linhagem Celular , DNA Complementar , DNA de Plantas , Deleção de Genes , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Família Multigênica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Plântula/genética
3.
J Biol Chem ; 282(3): 1916-24, 2007 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-17098742

RESUMO

Stomatal guard cells control CO(2) uptake and water loss between plants and the atmosphere. Stomatal closure in response to the drought stress hormone, abscisic acid (ABA), results from anion and K(+) release from guard cells. Previous studies have shown that cytosolic Ca(2+) elevation and ABA activate S-type anion channels in the plasma membrane of guard cells, leading to stomatal closure. However, membrane-bound regulators of abscisic acid signaling and guard cell anion channels remain unknown. Here we show that the ATP binding cassette (ABC) protein AtMRP5 is localized to the plasma membrane. Mutation in the AtMRP5 ABC protein impairs abscisic acid and cytosolic Ca(2+) activation of slow (S-type) anion channels in the plasma membrane of guard cells. Interestingly, atmrp5 insertion mutant guard cells also show impairment in abscisic acid activation of Ca(2+)-permeable channel currents in the plasma membrane of guard cells. These data provide evidence that the AtMRP5 ABC transporter is a central regulator of guard cell ion channel during abscisic acid and Ca(2+) signal transduction in guard cells.


Assuntos
Ácido Abscísico/química , Trifosfato de Adenosina/química , Ânions , Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/fisiologia , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Citosol/metabolismo , Teste de Complementação Genética , Glibureto/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Potássio/química , Ligação Proteica , Protoplastos/metabolismo , Transdução de Sinais , Estomas Cirúrgicos
4.
FEBS Lett ; 580(30): 6891-7, 2006 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-17150215

RESUMO

ABC transporters from the multidrug resistance-associated protein (MRP) subfamily are glutathione S-conjugate pumps exhibiting a broad substrate specificity illustrated by numerous xenobiotics, such as anticancer drugs, herbicides, pesticides and heavy metals. The engineering of MRP transporters into plants might be interesting either to reduce the quantity of xenobiotics taken up by the plant in the context of "safe-food" strategies or, conversely, in the development of phytoremediation strategies in which xenobiotics are sequestered in the vacuolar compartment. In this report, we obtained Arabidopsis transgenic plants overexpressing human MRP1. In these plants, expression of MRP1 did not increase plant resistance to antimony salts (Sb(III)), a classical glutathione-conjugate substrate of MRP1. However, the transporter was fully translated in roots and shoots, and targeted to the plasma membrane. In order to investigate the functionality of MRP1 in Arabidopsis, mesophyll cell protoplasts (MCPs) were isolated from transgenic plants and transport activities were measured by using calcein or Sb(III) as substrates. Expression of MRP1 at the plasma membrane was correlated with an increase in the MCPs resistance to Sb(III) and a limitation of the metalloid content in the protoplasts due to an improvement in Sb(III) efflux. Moreover, Sb(III) transport was sensitive to classical inhibitors of the human MRP1, such as MK571 or glibenclamide. These results demonstrate that a human ABC transporter can be functionally introduced in Arabidopsis, which might be useful, with the help of stronger promoters, to reduce the accumulation of xenobiotics in plants, such as heavy metals from multi-contaminated soils.


Assuntos
Antimônio/química , Antimônio/farmacologia , Arabidopsis/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Protoplastos/efeitos dos fármacos , Protoplastos/metabolismo , Sais/química , Antineoplásicos/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Transporte Biológico , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Genes Reporter/genética , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plantas Geneticamente Modificadas , Biossíntese de Proteínas/genética , RNA de Plantas/genética
5.
FEBS Lett ; 579(6): 1515-22, 2005 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-15733866

RESUMO

The Arabidopsis thaliana AtHMA4 is a P1B-type ATPase that clusters with the Zn/Cd/Pb/Co subgroup. It has been previously shown, by heterologous expression and the study of AtHMA4 knockout or overexpressing lines in Arabidopsis , that AtHMA4 is implicated in zinc homeostasis and cadmium tolerance. Here, we report the study of the heterologous expression of AtHMA4 in the yeast Saccharomyces cerevisiae. AtHMA4 expression resulted in an increased tolerance to Zn, Cd and Pb and to a phenotypic complementation of hypersensitive mutants. In contrast, an increased sensitivity towards Co was observed. An AtHMA4::GFP fusion protein was observed in endocytic vesicles and at the yeast plasma membrane. Mutagenesis of the cysteine and glutamate residues from the N-ter degenerated heavy metal binding domain impaired the function of AtHMA4. It was also the case when the C-ter His11 stretch was deleted, giving evidence that these amino acids are essential for the AtHMA4 binding/translocation of metals.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Histidina/metabolismo , Metais Pesados/metabolismo , Adenosina Trifosfatases/genética , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sítios de Ligação , Transporte Biológico , Cádmio/metabolismo , Cádmio/farmacologia , Expressão Gênica , Histidina/genética , Chumbo/metabolismo , Chumbo/farmacologia , Metais Pesados/farmacologia , Microssomos/metabolismo , Mutagênese Sítio-Dirigida/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Zinco/metabolismo , Zinco/farmacologia
6.
FEBS Lett ; 554(1-2): 23-9, 2003 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-14596908

RESUMO

The role of ATP-binding cassette (ABC) proteins such as multidrug resistance-associated proteins (MRPs) is critical in drug resistance in cancer cells and in plant detoxification processes. Due to broad substrate spectra, specific modulators of these proteins are still lacking. Sulfonylureas such as glibenclamide are used to treat non-insulin-dependent diabetes since they bind to the sulfonylurea receptor. Glibenclamide also inhibits the cystic fibrosis transmembrane conductance regulator, p-glycoprotein in animals and guard cell ion channels in plants. To investigate whether this compound is a more general blocker of ABC transporters the sensitivity of ABC-type transport processes across the vacuolar membrane of plants and yeast towards glibenclamide was evaluated. Glibenclamide inhibits the ATP-dependent uptake of beta-estradiol 17-(beta-D-glucuronide), lucifer yellow CH, and (2',7'-bis-(2-carboxyethyl)-5-(and-6-)carboxyfluorescein. Transport of glutathione conjugates into plant but not into yeast vacuoles was drastically reduced by glibenclamide. Thus, irrespective of the homologies between plant, yeast and animal MRP transporters, specific features of plant vacuolar MRPs with regard to sensitivity towards sulfonylureas exist. Glibenclamide could be a useful tool to trap anionic fluorescent indicator dyes in the cytosol.


Assuntos
Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Canais de Potássio Corretores do Fluxo de Internalização , Compostos de Sulfonilureia/farmacologia , Transportadores de Cassetes de Ligação de ATP , Trifosfato de Adenosina/farmacologia , Relação Dose-Resposta a Droga , Corantes Fluorescentes/farmacocinética , Proteínas Fúngicas/efeitos dos fármacos , Glucuronídeos/metabolismo , Glibureto/farmacologia , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Proteínas de Plantas/efeitos dos fármacos , Canais de Potássio , Receptores de Droga , Receptores de Sulfonilureias , Vacúolos/metabolismo
7.
Nat Biotechnol ; 21(8): 914-9, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12872132

RESUMO

We have studied the utility of the yeast protein YCF1, which detoxifies cadmium by transporting it into vacuoles, for the remediation of lead and cadmium contamination. We found that the yeast YCF1-deletion mutant DTY167 was hypersensitive to Pb(II) as compared with wild-type yeast. DTY167 cells overexpressing YCF1 were more resistant to Pb(II) and Cd(II) than were wild-type cells, and accumulated more lead and cadmium. Analysis of transgenic Arabidopsis thaliana plants overexpressing YCF1 showed that YCF1 is functionally active and that the plants have enhanced tolerance of Pb(II) and Cd(II) and accumulated greater amounts of these metals. These results suggest that transgenic plants expressing YCF1 may be useful for phytoremediation of lead and cadmium.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Cádmio/farmacocinética , Tolerância a Medicamentos/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Engenharia Genética/métodos , Chumbo/farmacocinética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Biodegradação Ambiental , Clonagem Molecular , Melhoramento Genético/métodos , Resíduos Industriais/prevenção & controle , Plantas Geneticamente Modificadas/metabolismo , Eliminação de Resíduos/métodos , Proteínas de Saccharomyces cerevisiae/genética , Poluentes do Solo/farmacocinética
8.
Plant J ; 32(4): 539-48, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12445125

RESUMO

Because plant wilting has been described as a consequence of cadmium (Cd2+) toxicity, we investigate Cd2+ effects on plant water losses, gas exchanges and stomatal behaviour in Arabidopsis thaliana L. Effects of 1-week Cd2+ application in hydroponic condition (CdCl2 10-100 micro m) were analyzed. A 10- micro m Cd2+ concentration had no significant effect on the plant-water relationship and carbon assimilation. At higher Cd2+ concentrations, a Cd2+ -dependent decrease in leaf conductance and CO2 uptake was observed despite the photosynthetic apparatus appeared not to be affected as probed by fluorescence measurements. In epidermal strip bioassays, nanomolar Cd2+ concentrations reduced stomatal opening under light in A. thaliana, Vicia faba and Commelina communis. Application of 5 micro m ABA limited the root-to-shoot translocation of cadmium. However, the Cd2+-induced stomatal closure was likely ABA-independent, since a 5-day treatment with 50 micro m Cd2+ did not affect the plant relative water content. Additionally, a similar Cd2+-induced stomatal closure was observed in the ABA insensitive mutant abi1-1. Interestingly, this mutant displayed a higher transpiration rate than the wild type but did not accumulate more Cd2+, arguing that Cd2+ uptake is not dependent only on the transpiration flow. Application of putative calcium channels inhibitors suppressed the inhibitory effect of Cd2+ in epidermal strip experiments, suggesting that Cd2+ could enter the guard cell through calcium channels. Patch-clamp studies with V. faba guard cell protoplasts showed that plasma membrane K+ channels were insensitive to external Cd2+ application whereas Ca2+ channels were found permeable to Cd2+. In conclusion, we propose that Cd2+ affects guard cell regulation in an ABA-independent manner by entering the cytosol via Ca2+ channels.


Assuntos
Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Cloreto de Cádmio/metabolismo , Cloreto de Cádmio/toxicidade , Canais de Cálcio/metabolismo , Água/metabolismo , Ácido Abscísico/farmacologia , Dióxido de Carbono/metabolismo , Relação Dose-Resposta a Droga , Condutividade Elétrica , Transporte de Íons/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Canais de Potássio/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA