Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Front Immunol ; 15: 1354101, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495894

RESUMO

Beyond the direct benefit that a transplanted organ provides to an individual recipient, the study of the transplant process has the potential to create a better understanding of the pathogenesis, etiology, progression and possible therapy for recurrence of disease after transplantation while at the same time providing insight into the original disease. Specific examples of this include: 1) recurrence of focal segmental glomerulosclerosis (FSGS) after kidney transplantation, 2) recurrent autoimmunity after pancreas transplantation, and 3) recurrence of disease after orthotopic liver transplantation (OLT) for cirrhosis related to progressive steatosis secondary to jejuno-ileal bypass (JIB) surgery. Our team has been studying these phenomena and their immunologic underpinnings, and we suggest that expanding the concept to other pathologic processes and/or transplanted organs that harbor the risk for recurrent disease may provide novel insight into the pathogenesis of a host of other disease processes that lead to organ failure.


Assuntos
Glomerulosclerose Segmentar e Focal , Falência Renal Crônica , Transplante de Rim , Transplantes , Humanos , Recidiva Local de Neoplasia/complicações , Transplante de Rim/efeitos adversos , Falência Renal Crônica/etiologia
2.
Glomerular Dis ; 3(1): 220-229, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37915860

RESUMO

Introduction: The non-neoplastic kidney parenchyma from nephrectomies is often overlooked in routine examinations. We aimed to evaluate the associations between global glomerulosclerosis (GS), interstitial fibrosis (IF), or arteriosclerosis (AS) and estimated glomerular filtration rate (eGFR), dipstick proteinuria, and other clinical factors. Methods: We performed a cross-sectional analysis of 781 patients with nephrectomy. We used regression models with and without interaction factors. The tested exposures were GS, IF, or AS, and the outcome measures were GFR and dipstick proteinuria. Results: In multivariable analyses, increasing degrees of GS, IF, or AS were significantly associated with lower eGFR and proteinuria (p < 0.05 for each). Obesity and hypertension (HTN) modified the association between eGFR and degrees of GS, whereas proteinuria and cardiovascular disease (CVD) modified the association between eGFR and degrees of AS (p for interaction <0.05). Compared with GS <10%, GS >50% was associated with lower eGFR in patients with (-45 mL/min/1.73 m2) than without (-19 mL/min/1.73 m2) obesity, and GS >50% was associated with lower eGFR in patients with (-31 mL/min/1.73 m2) than without (-16 mL/min/1.73 m2) HTN. Compared with AS <26%, AS >50% was associated with lower eGFR in patients with (-11 mL/min/1.73 m2) than without (-6 mL/min/1.73 m2) proteinuria, and AS >50% was associated with lower eGFR in patients with (-23 mL/min/1.73 m2) than without (-7 mL/min/1.73 m2) CVD. Conclusion: Greater degrees of each GS, IF, and AS are independently associated with proteinuria and lower eGFR. Obesity, HTN, proteinuria, and CVD modify the relationship between eGFR and specific histopathological features of nephrosclerosis.

3.
Radiother Oncol ; 187: 109813, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37468066

RESUMO

BACKGROUND: Radiation nephropathy (RN) can be a severe late complication for patients treated with radiotherapy (RT) targeting abdominal and paraspinal tumors. Recent studies investigating the mechanisms of RT-mediated injury in the kidney have demonstrated that RT disrupts the cellular integrity of renal podocytes leading to cell death and loss of renal function. AIM: To determine if RT-induced renal dysfunction is associated with alterations in podocyte and glomerular function, and whether RT-induced podocyte alterations were associated with changes in the glomerular basement membrane (GBM). METHODS: C57BL/6 mice were treated with focal bilateral X-irradiation using a single dose (SD) of 4 Gy, 10 Gy, or 14 Gy or fractionated dosing (FD) of 5x6Gy or 24x2Gy. Then, 10-40 weeks after RT parameters of renal function were measured, along with glomerular filtration rate (GFR) and glomerular histology, as well as ultrastructural changes in GBM by transmission electron microscopy. RESULTS: RT treatment resulted in persistent changes in renal function beginning at 10 weeks with little recovery up to 40 weeks post RT. Dose dependent changes were seen with increasing SD but no functional sparing was evident after FD. RT-induced loss of renal function was associated with expansion of the GBM and significant increases in foot process width, and associated with significant reduction in GFR, podocyte loss, and renal fibrosis. CONCLUSION: For the first time, these data show that expansion of the GBM is one consequence of radiation injury, and disarrangement of the GBM might be associated with the death of podocytes. These data shed new light on the role podocyte injury and GBM in RT-induced renal dysfunction.


Assuntos
Nefropatias , Podócitos , Lesões por Radiação , Camundongos , Animais , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Glomérulos Renais/patologia , Glomérulos Renais/ultraestrutura , Nefropatias/etiologia , Nefropatias/metabolismo , Nefropatias/patologia , Podócitos/metabolismo , Podócitos/patologia , Podócitos/ultraestrutura , Lesões por Radiação/patologia
4.
Kidney Int ; 103(3): 565-579, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36442540

RESUMO

The diagnosis of nephrotic syndrome relies on clinical presentation and descriptive patterns of injury on kidney biopsies, but not specific to underlying pathobiology. Consequently, there are variable rates of progression and response to therapy within diagnoses. Here, an unbiased transcriptomic-driven approach was used to identify molecular pathways which are shared by subgroups of patients with either minimal change disease (MCD) or focal segmental glomerulosclerosis (FSGS). Kidney tissue transcriptomic profile-based clustering identified three patient subgroups with shared molecular signatures across independent, North American, European, and African cohorts. One subgroup had significantly greater disease progression (Hazard Ratio 5.2) which persisted after adjusting for diagnosis and clinical measures (Hazard Ratio 3.8). Inclusion in this subgroup was retained even when clustering was limited to those with less than 25% interstitial fibrosis. The molecular profile of this subgroup was largely consistent with tumor necrosis factor (TNF) pathway activation. Two TNF pathway urine markers were identified, tissue inhibitor of metalloproteinases-1 (TIMP-1) and monocyte chemoattractant protein-1 (MCP-1), that could be used to predict an individual's TNF pathway activation score. Kidney organoids and single-nucleus RNA-sequencing of participant kidney biopsies, validated TNF-dependent increases in pathway activation score, transcript and protein levels of TIMP-1 and MCP-1, in resident kidney cells. Thus, molecular profiling identified a subgroup of patients with either MCD or FSGS who shared kidney TNF pathway activation and poor outcomes. A clinical trial testing targeted therapies in patients selected using urinary markers of TNF pathway activation is ongoing.


Assuntos
Glomerulosclerose Segmentar e Focal , Nefrologia , Nefrose Lipoide , Síndrome Nefrótica , Humanos , Glomerulosclerose Segmentar e Focal/patologia , Nefrose Lipoide/diagnóstico , Inibidor Tecidual de Metaloproteinase-1 , Síndrome Nefrótica/diagnóstico , Fatores de Necrose Tumoral/uso terapêutico
5.
FASEB J ; 36(10): e22545, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36094323

RESUMO

The kidneys are radiosensitive and dose-limiting organs for radiotherapy (RT) targeting abdominal and paraspinal tumors. Excessive radiation doses to the kidneys ultimately lead to radiation nephropathy. Our prior work unmasked a novel role for the lipid-modifying enzyme, sphingomyelin phosphodiesterase acid-like 3b (SMPDL3b), in regulating the response of renal podocytes to radiation injury. In this study, we investigated the role of SMPDL3b in DNA double-strand breaks (DSBs) repair in vitro and in vivo. We assessed the kinetics of DSBs recognition and repair along with the ATM pathway and nuclear sphingolipid metabolism in wild-type (WT) and SMPDL3b overexpressing (OE) human podocytes. We also assessed the extent of DNA damage repair in SMPDL3b knock-down (KD) human podocytes, and C57BL6 WT and podocyte-specific SMPDL3b-knock out (KO) mice after radiation injury. We found that SMPDL3b overexpression enhanced DSBs recognition and repair through modulating ATM nuclear shuttling. OE podocytes were protected against radiation-induced apoptosis by increasing the phosphorylation of p53 at serine 15 and attenuating subsequent caspase-3 cleavage. SMPDL3b overexpression prevented radiation-induced alterations in nuclear ceramide-1-phosphate (C1P) and ceramide levels. Interestingly, exogenous C1P pretreatment radiosensitized OE podocytes by delaying ATM nuclear foci formation and DSBs repair. On the other hand, SMPDL3b knock-down, in vitro and in vivo, induced a significant delay in DSBs repair. Additionally, increased activation of apoptosis was induced in podocytes of SMPDL3b-KO mice compared to WT mice at 24 h post-irradiation. Together, our results unravel a novel role for SMPDL3b in radiation-induced DNA damage response. The current work suggests that SMPDL3b modulates nuclear sphingolipid metabolism, ATM nuclear shuttling, and DSBs repair.


Assuntos
Podócitos , Lesões por Radiação , Animais , Ceramidas/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3 , Quebras de DNA de Cadeia Dupla , Humanos , Rim/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Podócitos/metabolismo , Lesões por Radiação/genética , Lesões por Radiação/metabolismo , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo
6.
Am J Physiol Cell Physiol ; 322(3): C468-C481, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35108119

RESUMO

Advances in the understanding of lipid droplet biology have revealed essential roles for these organelles in mediating proper cellular homeostasis and stress response. Lipid droplets were initially thought to play a passive role in energy storage. However, recent studies demonstrate that they have substantially broader functions, including protection from reactive oxygen species, endoplasmic reticulum stress, and lipotoxicity. Dysregulation of lipid droplet homeostasis is associated with various pathologies spanning neurological, metabolic, cardiovascular, oncological, and renal diseases. This review provides an overview of the current understanding of lipid droplet biology in both health and disease.


Assuntos
Gotículas Lipídicas , Metabolismo dos Lipídeos , Estresse do Retículo Endoplasmático , Homeostase , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/fisiologia
7.
Front Med (Lausanne) ; 8: 732528, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660640

RESUMO

Patients undergoing radiotherapy (RT) for various tumors localized in the abdomen or pelvis often suffer from radiation nephrotoxicity as collateral damage. Renal podocytes are vulnerable targets for ionizing radiation and contribute to radiation-induced nephropathies. Our prior work previously highlighted the importance of the lipid-modifying enzyme sphingomyelinase acid phosphodiesterase like 3b (SMPDL3b) in modulating the radiation response in podocytes and glomerular endothelial cells. Hereby, we investigated the interplay between SMPDL3b and oxidative stress in mediating radiation injury in podocytes. We demonstrated that the overexpression of SMPDL3b in cultured podocytes (OE) reduced superoxide anion generation and NADPH oxidase activity compared to wild-type cells (WT) post-irradiation. Furthermore, OE podocytes showed downregulated levels of NOX1 and NOX4 after RT. On the other hand, treatment with the NOX inhibitor GKT improved WTs' survival post-RT and restored SMPDL3b to basal levels. in vivo, the administration of GKT restored glomerular morphology and decreased proteinuria in 26-weeks irradiated mice. Taken together, these results suggest a novel role for NOX-derived reactive oxygen species (ROS) upstream of SMPDL3b in modulating the response of renal podocytes to radiation.

8.
J Am Soc Nephrol ; 32(7): 1747-1763, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34135082

RESUMO

BACKGROUND: Studies on the relationship between renal function and the human plasma proteome have identified several potential biomarkers. However, investigations have been conducted largely in European populations, and causality of the associations between plasma proteins and kidney function has never been addressed. METHODS: A cross-sectional study of 993 plasma proteins among 2882 participants in four studies of European and admixed ancestries (KORA, INTERVAL, HUNT, QMDiab) identified transethnic associations between eGFR/CKD and proteomic biomarkers. For the replicated associations, two-sample bidirectional Mendelian randomization (MR) was used to investigate potential causal relationships. Publicly available datasets and transcriptomic data from independent studies were used to examine the association between gene expression in kidney tissue and eGFR. RESULTS: In total, 57 plasma proteins were associated with eGFR, including one novel protein. Of these, 23 were additionally associated with CKD. The strongest inferred causal effect was the positive effect of eGFR on testican-2, in line with the known biological role of this protein and the expression of its protein-coding gene (SPOCK2) in renal tissue. We also observed suggestive evidence of an effect of melanoma inhibitory activity (MIA), carbonic anhydrase III, and cystatin-M on eGFR. CONCLUSIONS: In a discovery-replication setting, we identified 57 proteins transethnically associated with eGFR. The revealed causal relationships are an important stepping stone in establishing testican-2 as a clinically relevant physiological marker of kidney disease progression, and point to additional proteins warranting further investigation.

9.
Pediatr Nephrol ; 36(9): 2747-2757, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33646395

RESUMO

BACKGROUND: The G1 and G2 alleles of apolipoprotein L1 (APOL1) are common in the Black population and associated with increased risk of focal segmental glomerulosclerosis (FSGS). The molecular mechanisms linking APOL1 risk variants with FSGS are not clearly understood, and APOL1's natural absence in laboratory animals makes studying its pathobiology challenging. METHODS: In a cohort of 90 Black patients with either FSGS or minimal change disease (MCD) enrolled in the Nephrotic Syndrome Study Network (58% pediatric onset), we used kidney biopsy traits as an intermediate outcome to help illuminate tissue-based consequences of APOL1 risk variants and expression. We tested associations between APOL1 risk alleles or glomerular APOL1 mRNA expression and 83 light- or electron-microscopy traits measuring structural and cellular kidney changes. RESULTS: Under both recessive and dominant models in the FSGS patient subgroup (61%), APOL1 risk variants were significantly correlated (defined as FDR <0.1) with decreased global mesangial hypercellularity, decreased condensation of cytoskeleton, and increased tubular microcysts. No significant correlations were detected in MCD cohort. Independent of risk alleles, glomerular APOL1 expression in FSGS patients was not correlated with morphologic features. CONCLUSIONS: While APOL1-associated FSGS is associated with two risk alleles, both one and two risk alleles are associated with cellular/tissue changes in this study of FSGS patients. Our lack of discovery of a large group of tissue differences in FSGS and no significant difference in MCD may be due to the lack of power but also supports investigating whether machine learning methods may more sensitively detect APOL1-associated changes.


Assuntos
Apolipoproteína L1/genética , Glomerulosclerose Segmentar e Focal , Alelos , Genótipo , Glomerulosclerose Segmentar e Focal/genética , Humanos , Síndrome Nefrótica/genética
10.
Int J Radiat Biol ; 97(5): 664-674, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33464992

RESUMO

PURPOSE: The kidney is a radiosensitive late-responding normal tissue. Injury is characterized by radiation nephropathy and decline of glomerular filtration rate (GFR). The current study aimed to compare two rapid and cost-effective methodologies of assessing GFR against more conventional biomarker measurements. METHODS: C57BL/6 mice were treated with bilateral focal X-irradiation (1x14Gy or 5x6Gy). Functional measurements of kidney injury were assessed 20 weeks post-treatment. GFR was estimated using a transcutaneous measurement of fluorescein-isothiocyanate conjugated (FITC)-sinistrin renal excretion and also dynamic contrast-enhanced CT imaging with a contrast agent (ISOVUE-300 Iopamidol). RESULTS: Hematoxylin and eosin (H&E) and Periodic acid-Schiff staining identified comparable radiation-induced glomerular atrophy and mesangial matrix accumulation after both radiation schedules, respectively, although the fractionated regimen resulted in less diffuse tubulointerstitial fibrosis. Albumin-to-creatinine ratios (ACR) increased after irradiation (1x14Gy: 100.4 ± 12.2 µg/mg; 6x5Gy: 80.4 ± 3.02 µg/mg) and were double that of nontreated controls (44.9 ± 3.64 µg/mg). GFR defined by both techniques was negatively correlated with BUN, mesangial expansion score, and serum creatinine. The FITC-sinistrin transcutaneous method was more rapid and can be used to assess GFR in conscious animals, dynamic contrast-enhanced CT imaging technique was equally safe and effective. CONCLUSION: This study demonstrated that GFR measured by dynamic contrast-enhanced CT imaging is safe and effective compared to transcutaneous methodology to estimate kidney function.


Assuntos
Rim/lesões , Rim/efeitos da radiação , Animais , Creatinina/sangue , Taxa de Filtração Glomerular/efeitos da radiação , Rim/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
Am J Physiol Renal Physiol ; 320(3): F442-F453, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33459165

RESUMO

Diabetic nephropathy (DN) is the leading cause of end-stage kidney disease. Besides glycemic and blood pressure control, environmental factors such as cigarette smoking (CS) adversely affect the progression of DN. The effects of CS on DN progression have been attributed to combustion-generated molecules without consideration to the role of nicotine (NIC), responsible for the addictive properties of both CS and electronic cigarettes (ECs). Podocytes are essential to preserve the structure and function of the glomerular filtration barrier, and strong evidence indicates that early podocyte loss promotes DN progression. We performed experiments in human podocytes and in a mouse model of diabetes that develops nephropathy resembling human DN. We determined that NIC binding to podocytes in concentrations achieved with CS and ECs activated NADPH oxidase, which sets in motion a dysfunctional molecular network integrated by cyclooxygenase 2, known to induce podocyte injury; downregulation of AMP-activated protein kinase, important for maintaining cellular energy stores and antioxidation; and upregulation of CD36, which increased lipid uptake and promoted apoptosis. In diabetic mice, NIC increased proteinuria, a recognized marker of chronic kidney disease progression, accompanied by reduced glomerular podocyte synaptopodin, a crucial stabilizer of the podocyte cytoskeleton, and increased fibronectin expression. This novel study critically implicates NIC itself as a contributor to DN progression in CS and EC users.NEW & NOTEWORTHY In this study, we demonstrate that nicotine increases the production of reactive oxygen species, increases cyclooxygenase-2 expression, and upregulates Cd36 while inducing downregulation of AMP-activated protein kinase. In vivo nicotine increases proteinuria and fibronectin expression in diabetic mice. This study demonstrates that effects of nicotine on podocytes are responsible, at least in part, for the deleterious effects of smoking in the progression of chronic kidney disease, including diabetic nephropathy.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Nefropatias Diabéticas/metabolismo , Nicotina/farmacologia , Podócitos/metabolismo , Fumar/efeitos adversos , Animais , Apoptose/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Humanos , Camundongos , Podócitos/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
12.
Kidney Int ; 98(5): 1275-1285, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32739420

RESUMO

Defective cholesterol metabolism primarily linked to reduced ATP-binding cassette transporter A1 (ABCA1) expression is closely associated with the pathogenesis and progression of kidney diseases, including diabetic kidney disease and Alport Syndrome. However, whether the accumulation of free or esterified cholesterol contributes to progression in kidney disease remains unclear. Here, we demonstrate that inhibition of sterol-O-acyltransferase-1 (SOAT1), the enzyme at the endoplasmic reticulum that converts free cholesterol to cholesterol esters, which are then stored in lipid droplets, effectively reduced cholesterol ester and lipid droplet formation in human podocytes. Furthermore, we found that inhibition of SOAT1 in podocytes reduced lipotoxicity-mediated podocyte injury in diabetic kidney disease and Alport Syndrome in association with increased ABCA1 expression and ABCA1-mediated cholesterol efflux. In vivo, Soat1 deficient mice did not develop albuminuria or mesangial expansion at 10-12 months of age. However, Soat1 deficiency/inhibition in experimental models of diabetic kidney disease and Alport Syndrome reduced cholesterol ester content in kidney cortices and protected from disease progression. Thus, targeting SOAT1-mediated cholesterol metabolism may represent a new therapeutic strategy to treat kidney disease in patients with diabetic kidney disease and Alport Syndrome, like that suggested for Alzheimer's disease and cancer treatments.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Nefrite Hereditária , Podócitos , Albuminúria , Animais , Colesterol , Nefropatias Diabéticas/etiologia , Humanos , Camundongos , Nefrite Hereditária/genética
13.
FASEB J ; 34(6): 7915-7926, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32293077

RESUMO

The intracellular molecular pathways involved in radiation-induced nephropathy are still poorly understood. Glomerular endothelial cells are key components of the structure and function of the glomerular filtration barrier but little is known about the mechanisms implicated in their injury and repair. The current study establishes the response of immortalized human glomerular endothelial cells (GEnC) to ionizing radiation (IR). We investigated the role of sphingolipids and the lipid-modifying enzyme sphingomyelin phosphodiesterase acid-like 3b (SMPDL3b) in radiation-induced GEnC damage. After delivering a single dose of radiation, long and very-long-chain ceramide species, and the expression levels of SMPDL3b were elevated. In contrast, levels of ceramide-1-phosphate (C1P) dropped in a time-dependent manner although mRNA and protein levels of ceramide kinase (CERK) remained stable. Treatment with C1P or knocking down SMPDL3b partially restored cell survival and conferred radioprotection. We also report a novel role for the NADPH oxidase enzymes (NOXs), namely NOX1, and NOX-derived reactive oxygen species (ROS) in radiation-induced GEnC damage. Subjecting cultured endothelial cells to radiation was associated with increased NOX activity and superoxide anion generation. Silencing NOX1 using NOX1-specific siRNA mitigated radiation-induced oxidative stress and cellular injury. In addition, we report a novel connection between NOX and SMPDL3b. Treatment with the NOX inhibitor, GKT, decreased radiation-induced cellular injury and restored SMPDL3b basal levels of expression. Our findings indicate the importance of SMPDL3b as a potential therapeutic target in radiation-induced kidney damage.


Assuntos
Células Endoteliais/metabolismo , Nefropatias/metabolismo , Glomérulos Renais/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Animais , Linhagem Celular , Humanos , Glomérulos Renais/efeitos da radiação , Masculino , Camundongos Endogâmicos C57BL , NADPH Oxidase 1/metabolismo , RNA Mensageiro/metabolismo , Radiação , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo
14.
PLoS One ; 14(10): e0222948, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31581251

RESUMO

Focal segmental glomerulosclerosis (FSGS) accounts for about 40% of all nephrotic syndrome cases in adults. The presence of several potential circulating factors has been suggested in patients with primary FSGS and particularly in patients with recurrent disease after transplant. Irrespectively of the nature of the circulating factors, this study was aimed at identifying early glomerular/podocyte-specific pathways that are activated by the sera of patients affected by FSGS. Kidney biopsies were obtained from patients undergoing kidney transplantation due to primary FSGS. Donor kidneys were biopsied pre-reperfusion (PreR) and a subset 1-2 hours after reperfusion of the kidney (PostR). Thirty-one post reperfusion (PostR) and 36 PreR biopsy samples were analyzed by microarray and gene enrichment KEGG pathway analysis. Data were compared to those obtained from patients with incident primary FSGS enrolled in other cohorts as well as with another cohort to correct for pathways activated by ischemia reperfusion. Using an ex-vivo cell-based assay in which human podocytes were cultured in the presence of sera from patients with recurrent and non recurrent FSGS, the molecular signature of podocytes exposed to sera from patients with REC was compared to the one established from patients with NON REC. We demonstrate that inflammatory pathways, including the TNF pathway, are primarily activated immediately after exposure to the sera of patients with primary FSGS, while phagocytotic pathways are activated when proteinuria becomes clinically evident. The TNF pathway activation by one or more circulating factors present in the sera of patients with FSGS supports prior experimental findings from our group demonstrating a causative role of local TNF in podocyte injury in FSGS. Correlation analysis with clinical and histological parameters of disease was performed and further supported a possible role for TNF pathway activation in FSGS. Additionally, we identified a unique set of genes that is specifically activated in podocytes when cultured in the presence of serum of patients with REC FSGS. This clinical translational study supports our prior experimental findings describing a potential role of the TNF pathway in the pathogenesis of FSGS. Validation of these findings in larger cohorts may lay the ground for the implementation of integrated system biology approaches to risk stratify patients affected by FSGS and to identify novel pathways relevant to podocyte injury.


Assuntos
Regulação da Expressão Gênica , Glomerulosclerose Segmentar e Focal/sangue , Glomerulosclerose Segmentar e Focal/genética , Glomérulos Renais/metabolismo , Podócitos/metabolismo , Transdução de Sinais , Adulto , Biomarcadores/sangue , Biópsia , Estudos de Coortes , Feminino , Glomerulosclerose Segmentar e Focal/patologia , Humanos , Inflamação/genética , Inflamação/patologia , Glomérulos Renais/patologia , Masculino , Podócitos/patologia , Proteinúria/sangue , Recidiva , Fatores de Risco , Transdução de Sinais/genética , Resultado do Tratamento
15.
Am J Nephrol ; 50(1): 29-36, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31167184

RESUMO

BACKGROUND: In the absence of a histological diagnosis, persistent albuminuria is globally accepted as the main diagnostic criteria for diabetic kidney disease (DKD). METHODS: In the present retrospective study, we evaluated data from an Italian cohort of 42 deceased diabetic donors (mainly with type 2 diabetes). Using the kidney biopsies obtained at the time of donation to evaluate single or double allocation based on Karpinski score, we determined the prevalence of histological lesions attributable to diabetes. RESULTS: All 42 donors presented with proteinuria in the normal range and an estimated glomerular filtration rate (eGFR) (chronic kidney disease [CKD]-EPI) >60 mL/min/1.73 m2. A kidney biopsy was available for 36 patients; of these, one was not interpretable and 32 showed histopathological lesions consistent with DKD and encompassing all histological classes. Thus, we found a relatively high proportion of histologically proven DKD that had been clinically undiagnosed, as none of the patient had significant proteinuria and eGFR <60 mL/min/1.73 m2. CONCLUSIONS: The data we present here support the need to implement routine kidney biopsies in normoalbuminuric diabetic subjects in the early stages of CKD. Such strategy may help to improve risk stratification in diabetic patients and guide therapeutic decisions during the early stages of the disease.


Assuntos
Albuminúria/diagnóstico , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/diagnóstico , Membrana Basal Glomerular/patologia , Idoso , Albuminúria/etiologia , Albuminúria/patologia , Albuminúria/urina , Biópsia , Diabetes Mellitus Tipo 1/urina , Diabetes Mellitus Tipo 2/urina , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/urina , Feminino , Membrana Basal Glomerular/ultraestrutura , Taxa de Filtração Glomerular , Humanos , Masculino , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , Estudos Retrospectivos , Medição de Risco/métodos
16.
PLoS One ; 14(4): e0211559, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30998685

RESUMO

Apolipoprotein L1 (APOL1) genetic variants G1 and G2, compared to the common allele G0, are major risk factors for non-diabetic kidney disease in African descent populations. APOL1 is a minor protein component of HDL, as well as being expressed in podocytes and vascular cells. Reverse cholesterol transport involves the transport of cholesterol to HDL by cellular ATP-binding cassette; ABCA1 and ABCG1 with subsequent delivery from peripheral tissues to the liver. With impaired reverse cholesterol transport, lipid accumulation occurs and macrophages morphologically transform into foam cells, releasing inflammatory factors. We asked whether the APOL1 risk variants alter peripheral cholesterol metabolism and specifically affect macrophage cholesterol efflux. Tissues and bone marrow (BM)-derived monocytes were isolated from wild-type mice (WT) and from BAC/APOL1 transgenic (APOL1-G0, APOL1-G1, and APOL1-G2) mice, which carry a bacterial artificial chromosome that contains the human APOL1 genomic region. Monocytes were differentiated into macrophages using M-CSF, and then polarized into M1 and M2 macrophages. Cholesterol content, cholesterol efflux, and ABCA1 and ABCG1 mRNA expression were measured. Kidney, spleen, and bone marrow-derived macrophages from APOL1-G1 and -G2 mice showed increased cholesterol accumulation and decreased ABCA1 and ABCG1 mRNA levels. BM-derived macrophages from APOL1-G1 and -G2 mice showed significantly reduced cholesterol efflux compared to WT or APOL1-G0 macrophages. Taken together, the evidence suggests that APOL1-G1 and -G2 risk variants impaired reverse cholesterol transport through decreased expression of cholesterol efflux transporters suggesting a possible mechanism to promote macrophage foam cell formation, driving inflammation in the glomerulus and renal interstitium.


Assuntos
Apolipoproteína L1/metabolismo , Colesterol/metabolismo , Rim/metabolismo , Macrófagos/metabolismo , Animais , Apolipoproteína L1/genética , Transporte Biológico , Células Cultivadas , Variação Genética , Humanos , Nefropatias/genética , Nefropatias/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Baço/metabolismo
17.
ACS Chem Biol ; 14(1): 37-49, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30452219

RESUMO

The importance of Discoidin Domain Receptor 1 (DDR1) in renal fibrosis has been shown via gene knockout and use of antisense oligonucleotides; however, these techniques act via a reduction of DDR1 protein, while we prove the therapeutic potential of inhibiting DDR1 phosphorylation with a small molecule. To date, efforts to generate a selective small-molecule to specifically modulate the activity of DDR1 in an in vivo model have been unsuccessful. We performed parallel DNA encoded library screens against DDR1 and DDR2, and discovered a chemical series that is highly selective for DDR1 over DDR2. Structure-guided optimization efforts yielded the potent DDR1 inhibitor 2.45, which possesses excellent kinome selectivity (including 64-fold selectivity over DDR2 in a biochemical assay), a clean in vitro safety profile, and favorable pharmacokinetic and physicochemical properties. As desired, compound 2.45 modulates DDR1 phosphorylation in vitro as well as prevents collagen-induced activation of renal epithelial cells expressing DDR1. Compound 2.45 preserves renal function and reduces tissue damage in Col4a3-/- mice (the preclinical mouse model of Alport syndrome) when employing a therapeutic dosing regime, indicating the real therapeutic value of selectively inhibiting DDR1 phosphorylation in vivo. Our results may have wider significance as Col4a3-/- mice also represent a model for chronic kidney disease, a disease which affects 10% of the global population.


Assuntos
DNA/genética , Receptor com Domínio Discoidina 1/antagonistas & inibidores , Rim/fisiopatologia , Nefrite Hereditária/genética , Animais , Autoantígenos/genética , Autoantígenos/metabolismo , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Receptor com Domínio Discoidina 1/metabolismo , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Testes de Função Renal , Camundongos , Camundongos Knockout , Nefrite Hereditária/fisiopatologia , Fosforilação , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo
18.
Kidney Int ; 94(6): 1151-1159, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30301568

RESUMO

Studies suggest that altered renal lipid metabolism plays a role in the pathogenesis of diabetic kidney disease and that genetic or pharmacological induction of cholesterol efflux protects from the development of diabetic kidney disease and focal segmental glomerulosclerosis (FSGS). Here we tested whether altered lipid metabolism contributes to renal failure in the Col4a3 knockout mouse model for Alport Syndrome. There was an eight-fold increase in the cholesterol content in renal cortexes of mice with Alport Syndrome. This was associated with increased glomerular lipid droplets and cholesterol crystals. Treatment of mice with Alport Syndrome with hydroxypropyl-ß-cyclodextrin (HPßCD) reduced cholesterol content in the kidneys of mice with Alport Syndrome and protected from the development of albuminuria, renal failure, inflammation and tubulointerstitial fibrosis. Cholesterol efflux and trafficking-related genes were primarily affected in mice with Alport Syndrome and were differentially regulated in the kidney cortex and isolated glomeruli. HPßCD also protected from proteinuria and mesangial expansion in a second model of non-metabolic kidney disease, adriamycin-induced nephropathy. Consistent with our experimental findings, microarray analysis confirmed dysregulation of several lipid-related genes in glomeruli isolated from kidney biopsies of patients with primary FSGS enrolled in the NEPTUNE study. Thus, lipid dysmetabolism occurs in non-metabolic glomerular disorders such as Alport Syndrome and FSGS, and HPßCD improves renal function in experimental Alport Syndrome and FSGS.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Glomerulosclerose Segmentar e Focal/tratamento farmacológico , Glomérulos Renais/patologia , Nefrite Hereditária/tratamento farmacológico , 2-Hidroxipropil-beta-Ciclodextrina/farmacologia , Animais , Autoantígenos/genética , Biópsia , Colesterol/metabolismo , Colágeno Tipo IV/genética , Doxorrubicina/toxicidade , Feminino , Glomerulosclerose Segmentar e Focal/induzido quimicamente , Glomerulosclerose Segmentar e Focal/metabolismo , Glomerulosclerose Segmentar e Focal/patologia , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Camundongos Knockout , Nefrite Hereditária/genética , Nefrite Hereditária/metabolismo , Nefrite Hereditária/patologia , Estudos Observacionais como Assunto
19.
Int J Mol Sci ; 18(12)2017 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-29186855

RESUMO

Sphingolipids, long thought to be passive components of biological membranes with merely a structural role, have proved throughout the past decade to be major players in the pathogenesis of many human diseases. The study and characterization of several genetic disorders like Fabry's and Tay Sachs, where sphingolipid metabolism is disrupted, leading to a systemic array of clinical symptoms, have indeed helped elucidate and appreciate the importance of sphingolipids and their metabolites as active signaling molecules. In addition to being involved in dynamic cellular processes like apoptosis, senescence and differentiation, sphingolipids are implicated in critical physiological functions such as immune responses and pathophysiological conditions like inflammation and insulin resistance. Interestingly, the kidneys are among the most sensitive organ systems to sphingolipid alterations, rendering these molecules and the enzymes involved in their metabolism, promising therapeutic targets for numerous nephropathic complications that stand behind podocyte injury and renal failure.


Assuntos
Doença de Fabry/metabolismo , Nefropatias/metabolismo , Podócitos/metabolismo , Esfingolipídeos/metabolismo , Doença de Tay-Sachs/metabolismo , Animais , Doença de Fabry/genética , Doença de Fabry/terapia , Humanos , Nefropatias/genética , Nefropatias/terapia , Doença de Tay-Sachs/genética , Doença de Tay-Sachs/terapia , Pesquisa Translacional Biomédica
20.
FASEB J ; 31(11): 4734-4744, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28687610

RESUMO

In pancreatic ß cells, muscarinic cholinergic receptor M3 (M3R) stimulates glucose-induced secretion of insulin. Regulator of G-protein signaling (RGS) proteins are critical modulators of GPCR activity, yet their role in ß cells remains largely unknown. R7 subfamily RGS proteins are stabilized by the G-protein subunit Gß5, such that the knockout of the Gnb5 gene results in degradation of all R7 subunits. We found that Gnb5 knockout in mice or in the insulin-secreting MIN6 cell line almost completely eliminates insulinotropic activity of M3R. Moreover, overexpression of Gß5-RGS7 strongly promotes M3R-stimulated insulin secretion. Examination of this noncanonical mechanism in Gnb5-/- MIN6 cells showed that cAMP, diacylglycerol, or Ca2+ levels were not significantly affected. There was no reduction in the amplitude of free Ca2+ responses in islets from the Gnb5-/- mice, but the frequency of Ca2+ oscillations induced by cholinergic agonist was lowered by more than 30%. Ablation of Gnb5 impaired M3R-stimulated phosphorylation of ERK1/2. Stimulation of the ERK pathway in Gnb5-/- cells by epidermal growth factor restored M3R-stimulated insulin release to near normal levels. Identification of the novel role of Gß5-R7 in insulin secretion may lead to a new therapeutic approach for improving pancreatic ß-cell function.-Wang, Q., Pronin, A. N., Levay, K., Almaca, J., Fornoni, A., Caicedo, A., Slepak, V. Z. Regulator of G-protein signaling Gß5-R7 is a crucial activator of muscarinic M3 receptor-stimulated insulin secretion.


Assuntos
Sinalização do Cálcio/fisiologia , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas RGS/metabolismo , Receptor Muscarínico M3/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , AMP Cíclico/genética , AMP Cíclico/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/genética , Secreção de Insulina , Células Secretoras de Insulina/citologia , Camundongos , Camundongos Knockout , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação/fisiologia , Proteínas RGS/genética , Receptor Muscarínico M3/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA