Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Nat Med ; 29(8): 2030-2040, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37580533

RESUMO

Alcohol use disorder (AUD) exacts enormous personal, social and economic costs globally. Return to alcohol use in treatment-seeking patients with AUD is common, engendered by a cycle of repeated abstinence-relapse episodes even with use of currently available pharmacotherapies. Repeated ethanol use induces dopaminergic signaling neuroadaptations in ventral tegmental area (VTA) neurons of the mesolimbic reward pathway, and sustained dysfunction of reward circuitry is associated with return to drinking behavior. We tested this hypothesis by infusing adeno-associated virus serotype 2 vector encoding human glial-derived neurotrophic factor (AAV2-hGDNF), a growth factor that enhances dopaminergic neuron function, into the VTA of four male rhesus monkeys, with another four receiving vehicle, following induction of chronic alcohol drinking. GDNF expression ablated the return to alcohol drinking behavior over a 12-month period of repeated abstinence-alcohol reintroduction challenges. This behavioral change was accompanied by neurophysiological modulations to dopamine signaling in the nucleus accumbens that countered the hypodopaminergic signaling state associated with chronic alcohol use, indicative of a therapeutic modulation of limbic circuits countering the effects of alcohol. These preclinical findings suggest gene therapy targeting relapse prevention may be a potential therapeutic strategy for AUD.


Assuntos
Alcoolismo , Animais , Masculino , Consumo de Bebidas Alcoólicas/genética , Consumo de Bebidas Alcoólicas/metabolismo , Alcoolismo/terapia , Alcoolismo/tratamento farmacológico , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Etanol/metabolismo , Etanol/farmacologia , Etanol/uso terapêutico , Terapia Genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Núcleo Accumbens/metabolismo , Primatas/genética , Área Tegmentar Ventral/metabolismo
2.
Sci Transl Med ; 11(506)2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31434754

RESUMO

Niemann-Pick disease type A (NPD-A) is a lysosomal storage disorder characterized by neurodegeneration and early death. It is caused by loss-of-function mutations in the gene encoding for acid sphingomyelinase (ASM), which hydrolyzes sphingomyelin into ceramide. Here, we evaluated the safety of cerebellomedullary (CM) cistern injection of adeno-associated viral vector serotype 9 encoding human ASM (AAV9-hASM) in nonhuman primates (NHP). We also evaluated its therapeutic benefit in a mouse model of the disease (ASM-KO mice). We found that CM injection in NHP resulted in widespread transgene expression within brain and spinal cord cells without signs of toxicity. CM injection in the ASM-KO mouse model resulted in hASM expression in cerebrospinal fluid and in different brain areas without triggering an inflammatory response. In contrast, direct cerebellar injection of AAV9-hASM triggered immune response. We also identified a minimally effective therapeutic dose for CM injection of AAV9-hASM in mice. Two months after administration, the treatment prevented motor and memory impairment, sphingomyelin (SM) accumulation, lysosomal enlargement, and neuronal death in ASM-KO mice. ASM activity was also detected in plasma from AAV9-hASM CM-injected ASM-KO mice, along with reduced SM amount and decreased inflammation in the liver. Our results support CM injection for future AAV9-based clinical trials in NPD-A as well as other lysosomal storage brain disorders.


Assuntos
Dependovirus/metabolismo , Terapia Genética , Doença de Niemann-Pick Tipo A/genética , Doença de Niemann-Pick Tipo A/terapia , Sorogrupo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , Inflamação/patologia , Injeções , Fígado/patologia , Camundongos Knockout , Atividade Motora , Primatas , Esfingomielina Fosfodiesterase/administração & dosagem , Esfingomielina Fosfodiesterase/sangue , Esfingomielina Fosfodiesterase/genética , Transgenes
3.
Mol Ther Methods Clin Dev ; 13: 47-54, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-30666308

RESUMO

Here we evaluated the utility of MRI to monitor intrathecal infusions in nonhuman primates. Adeno-associated virus (AAV) spiked with gadoteridol, a gadolinium-based MRI contrast agent, enabled real-time visualization of infusions delivered either via cerebromedullary cistern, lumbar, cerebromedullary and lumbar, or intracerebroventricular infusion. The kinetics of vector clearance from the cerebrospinal fluid (CSF) were analyzed. Our results highlight the value of MRI in optimizing the delivery of infusate into CSF. In particular, MRI revealed differential patterns of infusate distribution depending on the route of delivery. Gadoteridol coverage analysis showed that cerebellomedullary cistern delivery was a reliable and effective route of injection, achieving broad infusate distribution in the brain and spinal cord, and was even greater when combined with lumbar injection. In contrast, intracerebroventricular injection resulted in strong cortical coverage but little spinal distribution. Lumbar injection alone led to the distribution of MRI contrast agent mainly in the spinal cord with little cortical coverage, but this delivery route was unreliable. Similarly, vector clearance analysis showed differences between different routes of delivery. Overall, our data support the value of monitoring CSF injections to dissect different patterns of gadoteridol distribution based on the route of intrathecal administration.

4.
Mol Ther ; 26(10): 2418-2430, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30057240

RESUMO

The present study was designed to characterize transduction of non-human primate brain and spinal cord with a modified adeno-associated virus serotype 2, incapable of binding to the heparan sulfate proteoglycan receptor, referred to as AAV2-HBKO. AAV2-HBKO was infused into the thalamus, intracerebroventricularly or via a combination of both intracerebroventricular and thalamic delivery. Thalamic injection of this modified vector encoding GFP resulted in widespread CNS transduction that included neurons in deep cortical layers, deep cerebellar nuclei, several subcortical regions, and motor neuron transduction in the spinal cord indicative of robust bidirectional axonal transport. Intracerebroventricular delivery similarly resulted in widespread cortical transduction, with one striking distinction that oligodendrocytes within superficial layers of the cortex were the primary cell type transduced. Robust motor neuron transduction was also observed in all levels of the spinal cord. The combination of thalamic and intracerebroventricular delivery resulted in transduction of oligodendrocytes in superficial cortical layers and neurons in deeper cortical layers. Several subcortical regions were also transduced. Our data demonstrate that AAV2-HBKO is a powerful vector for the potential treatment of a wide number of neurological disorders, and highlight that delivery route can significantly impact cellular tropism and pattern of CNS transduction.


Assuntos
Terapia Genética , Vetores Genéticos/efeitos adversos , Neurônios/efeitos dos fármacos , Parvovirinae/genética , Medula Espinal/efeitos dos fármacos , Animais , Transporte Axonal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Proteínas do Capsídeo/administração & dosagem , Proteínas do Capsídeo/genética , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/patologia , Dependovirus , Modelos Animais de Doenças , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Proteoglicanas de Heparan Sulfato/administração & dosagem , Proteoglicanas de Heparan Sulfato/genética , Humanos , Infusões Intraventriculares , Neurônios Motores/efeitos dos fármacos , Neurônios/patologia , Primatas , Medula Espinal/patologia , Tálamo/efeitos dos fármacos
5.
Stroke ; 48(5): 1420-1423, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28325846

RESUMO

BACKGROUND AND PURPOSE: Brain arteriovenous malformation (bAVM) is an important risk factor for intracranial hemorrhage. Current therapies are associated with high morbidities. Excessive vascular endothelial growth factor has been implicated in bAVM pathophysiology. Because soluble FLT1 binds to vascular endothelial growth factor with high affinity, we tested intravenous delivery of an adeno-associated viral vector serotype-9 expressing soluble FLT1 (AAV9-sFLT1) to alleviate the bAVM phenotype. METHODS: Two mouse models were used. In model 1, bAVM was induced in R26CreER;Eng2f/2f mice through global Eng gene deletion and brain focal angiogenic stimulation; AAV2-sFLT02 (an AAV expressing a shorter form of sFLT1) was injected into the brain at the time of model induction, and AAV9-sFLT1, intravenously injected 8 weeks after. In model 2, SM22αCre;Eng2f/2f mice had a 90% occurrence of spontaneous bAVM at 5 weeks of age and 50% mortality at 6 weeks; AAV9-sFLT1 was intravenously delivered into 4- to 5-week-old mice. Tissue samples were collected 4 weeks after AAV9-sFLT1 delivery. RESULTS: AAV2-sFLT02 inhibited bAVM formation, and AAV9-sFLT1 reduced abnormal vessels in model 1 (GFP versus sFLT1: 3.66±1.58/200 vessels versus 1.98±1.29, P<0.05). AAV9-sFLT1 reduced the occurrence of bAVM (GFP versus sFLT1: 100% versus 36%) and mortality (GFP versus sFLT1: 57% [12/22 mice] versus 24% [4/19 mice], P<0.05) in model 2. Kidney and liver function did not change significantly. Minor liver inflammation was found in 56% of AAV9-sFLT1-treated model 1 mice. CONCLUSIONS: By applying a regulated mechanism to restrict sFLT1 expression to bAVM, AAV9-sFLT1 can potentially be developed into a safer therapy to reduce the bAVM severity.


Assuntos
Inibidores da Angiogênese , Fístula Arteriovenosa/terapia , Terapia Genética/métodos , Vetores Genéticos , Malformações Arteriovenosas Intracranianas/terapia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular , Animais , Dependovirus , Modelos Animais de Doenças , Vetores Genéticos/administração & dosagem , Camundongos
6.
PLoS One ; 12(2): e0169965, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28166239

RESUMO

In Parkinson's disease (PD), aromatic L-amino acid decarboxylase (AADC) is the rate-limiting enzyme in the conversion of L-DOPA (Sinemet) to dopamine (DA). Previous studies in PD animal models demonstrated that lesion of dopaminergic neurons is associated with profound loss of AADC activity in the striatum, blocking efficient conversion of L-DOPA to DA. Relatively few studies have directly analyzed AADC in PD brains. Thus, the aim of this study was to gain a better understanding of regional changes in AADC activity, DA, serotonin and their monoamine metabolites in the striatum of PD patients and experimentally lesioned animals (rat and MPTP-treated nonhuman primate, NHP). Striatal AADC activity was determined post mortem in neuropathologically confirmed PD subjects, animal models and controls. A regional analysis was performed for striatal AADC activity and monoamine levels in NHP tissue. Interestingly, analysis of putaminal AADC activity revealed that control human striatum contained much less AADC activity than rat and NHP striata. Moreover, a dramatic loss of AADC activity in PD striatum compared to controls was detected. In MPTP-treated NHP, caudate nucleus was almost as greatly affected as putamen, although mean DA turnover was higher in caudate nucleus. Similarly, DA and DA metabolites were dramatically reduced in different regions of PD brains, including caudate nucleus, whereas serotonin was relatively spared. After L-DOPA administration in MPTP-treated NHP, very poor conversion to DA was detected, suggesting that AADC in NHP nigrostriatal fibers is mainly responsible for L-DOPA to DA conversion. These data support further the rationale behind viral gene therapy with AAV2-hAADC to restore AADC levels in putamen and suggest further the advisability of expanding vector delivery to include coverage of anterior putamen and the caudate nucleus.


Assuntos
Descarboxilases de Aminoácido-L-Aromático/metabolismo , Núcleo Caudado/metabolismo , Doença de Parkinson/metabolismo , Putamen/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Descarboxilases de Aminoácido-L-Aromático/genética , Corpo Estriado/metabolismo , Dependovirus/genética , Modelos Animais de Doenças , Dopamina/metabolismo , Ativação Enzimática , Feminino , Terapia Genética , Vetores Genéticos/genética , Humanos , Levodopa/metabolismo , Levodopa/uso terapêutico , Macaca mulatta , Masculino , Doença de Parkinson/genética , Doença de Parkinson/terapia , Ratos
7.
Mol Ther Methods Clin Dev ; 3: 16037, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27408903

RESUMO

Huntington's disease (HD) is caused by a toxic gain-of-function associated with the expression of the mutant huntingtin (htt) protein. Therefore, the use of RNA interference to inhibit Htt expression could represent a disease-modifying therapy. The potential of two recombinant adeno-associated viral vectors (AAV), AAV1 and AAV2, to transduce the cortico-striatal tissues that are predominantly affected in HD was explored. Green fluorescent protein was used as a reporter in each vector to show that both serotypes were broadly distributed in medium spiny neurons in the striatum and cortico-striatal neurons after infusion into the putamen and caudate nucleus of nonhuman primates (NHP), with AAV1-directed expression being slightly more robust than AAV2-driven expression. This study suggests that both serotypes are capable of targeting neurons that degenerate in HD, and it sets the stage for the advanced preclinical evaluation of an RNAi-based therapy for this disease.

8.
J Control Release ; 240: 434-442, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-26924352

RESUMO

Gene transfer technology offers great promise as a potential therapeutic approach to the brain but has to be viewed as a very complex technology. Success of ongoing clinical gene therapy trials depends on many factors such as selection of the correct genetic and anatomical target in the brain. In addition, selection of the viral vector capable of transfer of therapeutic gene into target cells, along with long-term expression that avoids immunotoxicity has to be established. As with any drug development strategy, delivery of gene therapy has to be consistent and predictable in each study subject. Failed drug and vector delivery will lead to failed clinical trials. In this article, we describe our experience with AAV viral vector delivery system, that allows us to optimize and monitor in real time viral vector administration into affected regions of the brain. In addition to discussing MRI-guided technology for administration of AAV vectors we have developed and now employ in current clinical trials, we also describe ways in which infusion cannula design and stereotactic trajectory may be used to maximize the anatomical coverage by using fluid backflow. This innovative approach enables more precise coverage by fitting the shape of the infusion to the shape of the anatomical target.


Assuntos
Encéfalo/diagnóstico por imagem , Dependovirus/genética , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Imageamento por Ressonância Magnética/métodos , Animais , Encéfalo/metabolismo , Ensaios Clínicos como Assunto , Desenho de Equipamento , Técnicas de Transferência de Genes/instrumentação , Terapia Genética/instrumentação , Humanos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/genética , Doença de Parkinson/terapia
9.
Hum Gene Ther Methods ; 27(1): 13-6, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26757202

RESUMO

Accessing cerebrospinal fluid (CSF) from the craniocervical junction through the posterior atlanto-occipital membrane via cerebellomedullary injection (also known as cisternal puncture or cisterna magna injection) has become a standard procedure in preclinical studies. Such delivery provides broader coverage to the central and peripheral nervous system unlike local parenchymal delivery alone. As a clinical application, this approach offers a more reliable method for neurological gene replacement delivery in infants, where skull-mounted devices are not indicated. Here we describe a consistent, precise, and safe method for CSF injection with minimal equipment and technical skills.


Assuntos
Sistema Nervoso Central/metabolismo , Dependovirus/genética , Técnicas de Transferência de Genes , Terapia Genética , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Animais , Cisterna Magna , Feminino , Humanos , Injeções Epidurais , Masculino , Primatas
10.
Drug Deliv ; 23(3): 781-6, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-24865286

RESUMO

In cases of malignant brain tumors, infiltrating tumor cells that exist at the tumor-surrounding brain tissue always escape from cytoreductive surgery and, protected by blood-brain barrier (BBB), survive the adjuvant chemoradiotherapy, eventually leading to tumor recurrence. Local interstitial delivery of chemotherapeutic agents is a promising strategy to target these cells. During our effort to develop effective drug delivery methods by intra-tumoral infusion of chemotherapeutic agents, we found consistent pattern of leakage from the tumor. Here we describe our findings and propose promising strategy to cover the brain tissue surrounding the tumor with therapeutic agents by means of convection-enhanced delivery. First, the intracranial tumor isograft model was used to define patterns of leakage from tumor mass after intra-tumoral infusion of the chemotherapeutic agents. Liposomal doxorubicin, although first distributed inside the tumor, distributed diffusely into the surrounding normal brain once the leakage happen. Trypan blue dye was used to evaluate the distribution pattern of peri-tumoral infusions. When infused intra- or peri-tumorally, infusates distributed robustly into the tumor border. Subsequently, volume of distributions with different infusion scheduling; including intra-tumoral infusion, peri-tumoral infusion after tumor resection, peri-tumoral infusion without tumor removal with or without systemic infusion of steroids, were compared with Evans-blue dye. Peri-tumoral infusion without tumor removal resulted in maximum volume of distribution. Prior use of steroids further increased the volume of distribution. Local interstitial drug delivery targeting tumor surrounding brain tissue before tumor removal should be more effective when targeting the invading cells.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Doxorrubicina/análogos & derivados , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Linhagem Celular Tumoral , Convecção , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Polietilenoglicóis/administração & dosagem , Ratos , Distribuição Tecidual/fisiologia
11.
J Control Release ; 220(Pt A): 51-60, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26437259

RESUMO

There is an urgent need to develop nanocarriers for the treatment of glioblastoma multiforme (GBM). Using co-registered positron emission tomography (PET) and magnetic resonance (MR) images, here we performed systematic studies to investigate how a nanocarrier's size affects the pharmacokinetics and biodistribution in rodents with a GBM xenograft. In particular, highly stable, long-circulating three-helix micelles (3HM), based on a coiled-coil protein tertiary structure, were evaluated as an alternative to larger nanocarriers. While the circulation half-life of the 3HM was similar to 110-nm PEGylated liposomes (t1/2=15.5 and 16.5h, respectively), the 20-nm micelles greatly enhanced accumulation within a U87MG xenograft in nu/nu rats after intravenous injection. After accounting for tumor blood volume, the extravasated nanoparticles were quantified from the PET images, yielding ~0.77%ID/cm(3) for the micelles and 0.45%ID/cm(3) for the liposomes. For GBM lesions with a volume greater than 100mm(3), 3HM accumulation was enhanced both within the detectable tumor and in the surrounding brain parenchyma. Further, the nanoparticle accumulation was shown to extend to the margins of the GBM xenograft. In summary, 3HM provides an attractive nanovehicle for carrying treatment to GBM.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Radioisótopos de Cobre/farmacocinética , Glioblastoma/diagnóstico por imagem , Micelas , Sequência de Aminoácidos , Animais , Autorradiografia , Volume Sanguíneo , Humanos , Lipossomos/farmacocinética , Imageamento por Ressonância Magnética , Masculino , Dados de Sequência Molecular , Nanopartículas/química , Tomografia por Emissão de Pósitrons , Ratos , Distribuição Tecidual
13.
PLoS One ; 10(4): e0122708, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25860990

RESUMO

Progressively blunted response to L-DOPA in Parkinson's disease (PD) is a critical factor that complicates long-term pharmacotherapy in view of the central importance of this drug in management of the PD-related motor disturbance. This phenomenon is likely due to progressive loss of one of the key enzymes involved in the biosynthetic pathway for dopamine in the basal ganglia: aromatic L-amino acid decarboxylase (AADC). We have developed a gene therapy based on an adeno-associated virus encoding human AADC (AAV2-hAADC) infused into the Parkinsonian striatum. Although no adverse clinical effects of the AAV2-hAADC gene therapy have been observed so far, the ability to more precisely regulate transgene expression or transgene product activity could be an important long-term safety feature. The present study was designed to define pharmacological regulation of the functional activity of AAV2-hAADC transgene product by manipulating L-DOPA and carbidopa (AADC inhibitor) administration in hemi-parkinsonian rats. Thirty days after unilateral striatal infusion of AAV2-hAADC, animals displayed circling behavior and acceleration of dopamine metabolism in the lesioned striatum after administration of a low dose of L-DOPA (5 mg/kg) co-administered with 1.25 mg/kg of carbidopa. This phenomenon was not observed in control AAV2-GFP-treated rats. Withdrawal of carbidopa from a daily L-DOPA regimen decreased the peripheral L-DOPA pool, resulting in almost total loss of L-DOPA-induced behavioral response in AAV2-hAADC rats and a significant decline in striatal dopamine turnover. The serum L-DOPA level correlated with the magnitude of circling behavior in AAV2-hAADC rats. Additionally, AADC activity in homogenates of lesioned striata transduced by AAV2-AADC was 10-fold higher when compared with AAV2-GFP-treated control striata, confirming functional transduction. Our data suggests that the pharmacological regulation of circulating L-DOPA might be effective in the controlling of function of AAV2-hAADC transgene product in PD gene therapy.


Assuntos
Descarboxilases de Aminoácido-L-Aromático/genética , Comportamento Animal/efeitos dos fármacos , Carbidopa/farmacologia , Dependovirus/genética , Oxidopamina/toxicidade , Animais , Descarboxilases de Aminoácido-L-Aromático/química , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Cromatografia Líquida de Alta Pressão , Corpo Estriado/metabolismo , Dopamina/análogos & derivados , Dopamina/análise , Técnicas Eletroquímicas , Terapia Genética , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Humanos , Imuno-Histoquímica , Levodopa/sangue , Levodopa/farmacologia , Masculino , Neostriado/metabolismo , Neostriado/patologia , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Ratos , Ratos Sprague-Dawley
14.
Artigo em Inglês | MEDLINE | ID: mdl-25541617

RESUMO

Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare, autosomal-recessive neurological disorder caused by mutations in the DDC gene that leads to an inability to synthesize catecholamines and serotonin. As a result, patients suffer compromised development, particularly in motor function. A recent gene replacement clinical trial explored putaminal delivery of recombinant adeno-associated virus serotype 2 vector encoding human AADC (AAV2-hAADC) in AADC-deficient children. Unfortunately, patients presented only modest amelioration of motor symptoms, which authors acknowledged could be due to insufficient transduction of putamen. We hypothesize that, with the development of a highly accurate MRI-guided cannula placement technology, a more effective approach might be to target the affected mid-brain neurons directly. Transduction of AADC-deficient dopaminergic neurons in the substantia nigra and ventral tegmental area with locally infused AAV2-hAADC would be expected to lead to restoration of normal dopamine levels in affected children. The objective of this study was to assess the long-term safety and tolerability of bilateral AAV2-hAADC MRI-guided pressurized infusion into the mid-brain of non-human primates. Animals received either vehicle, low or high AAV2-hAADC vector dose and were euthanized 1, 3 or 9 months after surgery. Our data indicate that effective mid-brain transduction was achieved without untoward effects.

15.
Front Neuroanat ; 8: 9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24672434

RESUMO

When nanoparticles/proteins are infused into the brain, they are often transported to distal sites in a manner that is dependent both on the characteristics of the infusate and the region targeted. We have previously shown that adeno-associated virus (AAV) is disseminated within the brain by perivascular flow and also by axonal transport. Perivascular distribution usually does not depend strongly on the nature of the infusate. Many proteins, neutral liposomes and AAV particles distribute equally well by this route when infused under pressure into various parenchymal locations. In contrast, axonal transport requires receptor-mediated uptake of AAV by neurons and engagement with specific transport mechanisms previously demonstrated for other neurotropic viruses. Cerebrospinal fluid (CSF) represents yet another way in which brain anatomy may be exploited to distribute nanoparticles broadly in the central nervous system. In this study, we assessed the distribution and perivascular transport of nanoparticles of different sizes delivered into the parenchyma of rodents and CSF in non-human primates.

16.
Nanomedicine (Lond) ; 9(14): 2099-108, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24494810

RESUMO

AIM: We sought to evaluate nanoliposomal irinotecan as an intravenous treatment in an orthotopic brain tumor model. MATERIALS & METHODS: Nanoliposomal irinotecan was administered intravenously in the intracranial U87MG brain tumor model in mice, and irinotecan and SN-38 levels were analyzed in malignant and normal tissues. Therapy studies were performed in comparison to free irinotecan and control treatments. RESULTS: Tissue analysis demonstrated favorable properties for nanoliposomal irinotecan, including a 10.9-fold increase in tumor AUC for drug compared with free irinotecan and 35-fold selectivity for tumor versus normal tissue exposure. As a therapy for orthotopic brain tumors, nanoliposomal irinotecan showed a mean survival time of 54.2 versus 29.5 days for free irinotecan. A total of 33% of the animals receiving nanoliposomal irinotecan showed no residual tumor by study end compared with no survivors in the other groups. CONCLUSION: Nanoliposomal irinotecan administered systemically provides significant pharmacologic advantages and may be an efficacious therapy for brain tumors.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Camptotecina/análogos & derivados , Lipossomos , Nanoestruturas , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/farmacocinética , Neoplasias Encefálicas/metabolismo , Camptotecina/administração & dosagem , Camptotecina/farmacocinética , Camptotecina/uso terapêutico , Irinotecano , Ratos
17.
Mol Ther ; 22(2): 329-337, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24419081

RESUMO

Many studies have demonstrated that adeno-associated virus serotype 9 (AAV9) transduces astrocytes and neurons when infused into rat or nonhuman primate (NHP) brain. We previously showed in rats that transduction of antigen-presenting cells (APC) by AAV9 encoding a foreign protein triggered a full neurotoxic immune response. Accordingly, we asked whether this phenomenon occurred in NHP. We performed parenchymal or intrathecal infusion of AAV9 encoding green fluorescent protein (GFP), a non-self protein derived from jellyfish, or human aromatic L-amino acid decarboxylase (hAADC), a self-protein, in separate NHP. Animals receiving AAV9-GFP into cisterna magna (CM) became ataxic, indicating cerebellar pathology, whereas AAV9-hAADC animals remained healthy. In transduced regions, AAV9-GFP elicited inflammation associated with early activation of astrocytic and microglial cells, along with upregulation of major histocompatibility complex class II (MHC-II) in glia. In addition, we found Purkinje neurons lacking calbindin after AAV9-GFP but not after AAV9-hAADC delivery. Our results demonstrate that AAV9-mediated expression of a foreign-protein, but not self-recognized protein, triggers complete immune responses in NHP regardless of the route of administration. Our results warrant caution when contemplating use of serotypes that can transduce APC if the transgene is not syngeneic with the host. This finding has the potential to complicate preclinical toxicology studies in which such vectors encoding human cDNA's are tested in animals.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Dependovirus , Vetores Genéticos , Inflamação/genética , Inflamação/imunologia , Animais , Sistema Nervoso Central/patologia , Corpo Estriado/imunologia , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Dependovirus/genética , Dependovirus/imunologia , Expressão Gênica , Genes Reporter , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Proteínas de Fluorescência Verde/genética , Humanos , Inflamação/patologia , Neurônios/metabolismo , Neurônios/patologia , Ratos , Transdução Genética , Transgenes
18.
Biomacromolecules ; 14(10): 3697-705, 2013 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-24050265

RESUMO

Designing stable drug nanocarriers, 10-30 nm in size, would have significant impact on their transport in circulation, tumor penetration, and therapeutic efficacy. In the present study, biological properties of 3-helix micelles loaded with 8 wt % doxorubicin (DOX), ~15 nm in size, were characterized to validate their potential as a nanocarrier platform. DOX-loaded micelles exhibited high stability in terms of size and drug retention in concentrated protein environments similar to conditions after intravenous injections. DOX-loaded micelles were cytotoxic to PPC-1 and 4T1 cancer cells at levels comparable to free DOX. 3-Helix micelles can be disassembled by proteolytic degradation of peptide shell to enable drug release and clearance to minimize long-term accumulation. Local administration to normal rat striatum by convection enhanced delivery (CED) showed greater extent of drug distribution and reduced toxicity relative to free drug. Intravenous administration of DOX-loaded 3-helix micelles demonstrated improved tumor half-life and reduced toxicity to healthy tissues in comparison to free DOX. In vivo delivery of DOX-loaded 3-helix micelles through two different routes clearly indicates the potential of 3-helix micelles as safe and effective nanocarriers for cancer therapeutics.


Assuntos
Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Portadores de Fármacos/farmacologia , Nanoestruturas/química , Neoplasias Experimentais/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Injeções Intravenosas , Camundongos , Camundongos Transgênicos , Micelas , Modelos Moleculares , Neoplasias Experimentais/patologia , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Propriedades de Superfície
19.
Hum Gene Ther ; 24(5): 526-32, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23517473

RESUMO

The present study builds on previous work showing that infusion of adeno-associated virus type 9 (AAV9) into the cisterna magna (CM) of nonhuman primates resulted in widespread transduction throughout cortex and spinal cord. Transduction efficiency was severely limited, however, by the presence of circulating anti-AAV antibodies. Accordingly, we compared AAV9 to a related serotype, AAV7, which has a high capsid homology. CM infusion of either AAV7 or AAV9 directed high level of cell transduction with similar patterns of distribution throughout brain cortex and along the spinal cord. Dorsal root ganglia and corticospinal tracts were also transduced. Both astrocytes and neurons were transduced. Interestingly, little transduction was observed in peripheral organs. Our results indicate that intrathecal delivery of either AAV7 or AAV9 directs a robust and widespread cellular transduction in the central nervous system and other peripheral neural structures.


Assuntos
Dependovirus/genética , Técnicas de Transferência de Genes/efeitos adversos , Vetores Genéticos/efeitos adversos , Macaca/genética , Transdução Genética , Animais , Astrócitos/patologia , Astrócitos/virologia , Córtex Cerebral/patologia , Córtex Cerebral/virologia , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Gânglios Espinais/virologia , Vetores Genéticos/líquido cefalorraquidiano , Proteínas de Fluorescência Verde/genética , Macaca/virologia , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Neurônios Motores/virologia , Medula Espinal/patologia , Medula Espinal/virologia
20.
Neuro Oncol ; 15(2): 189-97, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23262509

RESUMO

BACKGROUND: Liposomal drug packaging is well established as an effective means for increasing drug half-life, sustaining drug activity, and increasing drug efficacy, whether administered locally or distally to the site of disease. However, information regarding the relative effectiveness of peripheral (distal) versus local administration of liposomal therapeutics is limited. This issue is of importance with respect to the treatment of central nervous system cancer, for which the blood-brain barrier presents a significant challenge in achieving sufficient drug concentration in tumors to provide treatment benefit for patients. METHODS: We compared the anti-tumor activity and efficacy of a nanoliposomal formulation of irinotecan when delivered peripherally by vascular route with intratumoral administration by convection-enhanced delivery (CED) for treating intracranial glioblastoma xenografts in athymic mice. RESULTS: Our results show significantly greater anti-tumor activity and survival benefit from CED of nanoliposomal irinotecan. In 2 of 3 efficacy experiments, there were animal subjects that experienced apparent cure of tumor from local administration of therapy, as indicated by a lack of detectable intracranial tumor through bioluminescence imaging and histopathologic analysis. Results from investigating the effectiveness of combination therapy with nanoliposomal irinotecan plus radiation revealed that CED administration of irinotecan plus radiation conferred greater survival benefit than did irinotecan or radiation monotherapy and also when compared with radiation plus vascularly administered irinotecan. CONCLUSIONS: Our results indicate that liposomal formulation plus direct intratumoral administration of therapeutic are important for maximizing the anti-tumor effects of irinotecan and support clinical trial evaluation of this therapeutic plus route of administration combination.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Camptotecina/análogos & derivados , Sistemas de Liberação de Medicamentos , Glioblastoma/tratamento farmacológico , Lipossomos , Nanopartículas , Animais , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Camptotecina/administração & dosagem , Convecção , Vias de Administração de Medicamentos , Feminino , Glioblastoma/mortalidade , Glioblastoma/patologia , História Antiga , Humanos , Técnicas Imunoenzimáticas , Injeções Intraperitoneais , Irinotecano , Camundongos , Camundongos Nus , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA