Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Biomolecules ; 14(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275760

RESUMO

Telomere repeats protect linear chromosomes from degradation, and telomerase has a prominent role in their maintenance. Telomerase has telomere-independent effects on cell proliferation, DNA replication, differentiation, and tumorigenesis. TERT (telomerase reverse transcriptase enzyme), the catalytic subunit of telomerase, is required for enzyme activity. TERT promoter mutation and methylation are strongly associated with increased telomerase activation in cancer cells. TERT levels and telomerase activity are downregulated in stem cells during differentiation. The link between differentiation and telomerase can provide a valuable tool for the study of the epigenetic regulation of TERT. Oxygen levels can affect cellular behaviors including proliferation, metabolic activity, stemness, and differentiation. The role of oxygen in driving TERT promoter modifications in embryonic stem cells (ESCs) is poorly understood. We adopted a monolayer ESC differentiation model to explore the role of physiological oxygen (physoxia) in the epigenetic regulation of telomerase and TERT. We further hypothesized that DNMTs played a role in physoxia-driven epigenetic modification. ESCs were cultured in either air or a 2% O2 environment. Physoxia culture increased the proliferation rate and stemness of the ESCs and induced a slower onset of differentiation than in ambient air. As anticipated, downregulated TERT expression correlated with reduced telomerase activity during differentiation. Consistent with the slower onset of differentiation in physoxia, the TERT expression and telomerase activity were elevated in comparison to the air-oxygen-cultured ESCs. The TERT promoter methylation levels increased during differentiation in ambient air to a greater extent than in physoxia. The chemical inhibition of DNMT3B reduced TERT promoter methylation and was associated with increased TERT gene and telomerase activity during differentiation. DNMT3B ChIP (Chromatin immunoprecipitation) demonstrated that downregulated TERT expression and increased proximal promoter methylation were associated with DNMT3B promoter binding. In conclusion, we have demonstrated that DNMT3B directly associates with TERT promoter, is associated with differentiation-linked TERT downregulation, and displays oxygen sensitivity. Taken together, these findings help identify novel aspects of telomerase regulation that may play a role in better understanding developmental regulation and potential targets for therapeutic intervention.


Assuntos
Telomerase , Telomerase/genética , Telomerase/metabolismo , Epigênese Genética , Diferenciação Celular/genética , Metilação de DNA , Células-Tronco Embrionárias/metabolismo
2.
Exp Lung Res ; 49(1): 12-26, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36656657

RESUMO

PURPOSE: Chronic obstructive pulmonary disease (COPD) patients experience hypoxemia and lung tissue hypoxia, causing vasoconstriction, and at its most severe Cor pulmonale. However, minimal attention has been given to the effects of hypoxia at the cellular level. We hypothesize that a persistent progenitor cell population undergoes an aberrant differentiation process, influenced by changes in oxygen. METHODS: Distal lung progenitor cells from two emphysematous donors were cultured in 21% and 2% oxygen. Proliferation was determined on collagen-coated plastic and in 3T3-J2 co-culture. Epithelial (E-cadherin, pan-cytokeratin) and progenitor (TP63, cytokeratin 5) marker expressions were examined. Cells were differentiated at air-liquid interface, and ciliated, mucus-producing, and club cell populations identified by immunofluorescence. MUC5AC, MUC5B, CC10, and TP63 expression were determined using qRT-PCR, mucin5AC, and mucin5B protein levels by ELISA, and secreted mucin by periodic acid biotin hydrazide assay. RESULTS: Cells were positive for epithelial and progenitor markers at isolation and passage 5. Passage 5 cells in hypoxia increased the proportion of TP63 by 10% from 51.6 ± 1.2% to 62.6 ± 2.3% (p ≤ 0.01). Proliferative capacity was greater on 3T3J2 cells and in 2% oxygen, supporting the emergence of a proliferation unrestricted population with limited differentiation capacity. Differentiation resulted in ßIV tubulin positive-ciliated cells, mucin5AC, mucin5B, and CC10 positive secretory cells. Epithelial barrier formation was reduced (p ≤ 0.0001) in hypoxia-expanded cells. qRT-PCR showed higher mucin expression in 2% cells, significantly so with MUC5B (p ≤ 0.05). Although overall mucin5AC and mucin5B content was greater in 21% cells, normalization of secreted mucin to DNA showed a trend for increased mucin by low oxygen cells. CONCLUSIONS: These results demonstrate that hypoxia promotes a proliferative phenotype while affecting subsequent progenitor cell differentiation capacity. Furthermore, the retained differentiation potential becomes skewed to a more secretory phenotype, demonstrating that hypoxia may be contributing to disease symptoms and severity in COPD patients.


Assuntos
Pulmão , Doença Pulmonar Obstrutiva Crônica , Humanos , Pulmão/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Células Epiteliais/metabolismo , Mucinas/genética , Mucinas/metabolismo , Fenótipo , Células-Tronco , Hipóxia/metabolismo , Oxigênio/metabolismo , Mucina-5AC/genética , Mucina-5AC/metabolismo
3.
Int J Mol Sci ; 23(21)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36362383

RESUMO

The Human Mesenchymal Stem Cell (hMSC) secretome has pleiotropic effects underpinning its therapeutic potential. hMSC serum-free conditioned media (SFCM) contains a variety of cytokines, with previous studies linking a changed secretome composition to physoxia. The Jurkat T cell model allowed the efficacy of SFCM vs. serum-free media (SFM) in the suppression of immunological aspects, including proliferation and polarisation, to be explored. Cell growth in SFM was higher [(21% O2 = 5.3 × 105 ± 1.8 × 104 cells/mL) and (2% O2 = 5.1 × 105 ± 3.0 × 104 cells/mL)], compared to SFCM [(21% O2 = 2.4 × 105 ± 2.5 × 104 cells/mL) and (2% O2 = 2.2 × 105 ± 5.8 × 103 cells/mL)]. SFM supported IL-2 release following activation [(21% O2 = 5305 ± 211 pg/mL) and (2% O2 = 5347 ± 327 pg/mL)] whereas SFCM suppressed IL-2 secretion [(21% O2 = 2461 ± 178 pg/mL) and (2% O2 = 1625 ± 159 pg/mL)]. Anti-inflammatory cytokines, namely IL-4, IL-10, and IL-13, which we previously confirmed as components of hMSC SFCM, were tested. IL-10 neutralisation in SFCM restored proliferation in both oxygen environments (SFM/SFCM+antiIL-10 ~1-fold increase). Conversely, IL-4/IL-13 neutralisation showed no proliferation restoration [(SFM/SFM+antiIL-4 ~2-fold decrease), and (SFM/SFCM+antiIL-13 ~2-fold decrease)]. Present findings indicate IL-10 played an immunosuppressive role by reducing IL-2 secretion. Identification of immunosuppressive components of the hMSC secretome and a mechanistic understanding of their action allow for the advancement and refinement of potential future cell-free therapies.


Assuntos
Interleucina-10 , Células-Tronco Mesenquimais , Humanos , Interleucina-10/metabolismo , Células-Tronco Mesenquimais/metabolismo , Interleucina-13 , Interleucina-2 , Interleucina-4 , Secretoma , Imunomodulação , Meios de Cultura Livres de Soro , Citocinas
4.
Signal Transduct Target Ther ; 7(1): 272, 2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-35933430

RESUMO

Recent advancements in stem cell technology open a new door for patients suffering from diseases and disorders that have yet to be treated. Stem cell-based therapy, including human pluripotent stem cells (hPSCs) and multipotent mesenchymal stem cells (MSCs), has recently emerged as a key player in regenerative medicine. hPSCs are defined as self-renewable cell types conferring the ability to differentiate into various cellular phenotypes of the human body, including three germ layers. MSCs are multipotent progenitor cells possessing self-renewal ability (limited in vitro) and differentiation potential into mesenchymal lineages, according to the International Society for Cell and Gene Therapy (ISCT). This review provides an update on recent clinical applications using either hPSCs or MSCs derived from bone marrow (BM), adipose tissue (AT), or the umbilical cord (UC) for the treatment of human diseases, including neurological disorders, pulmonary dysfunctions, metabolic/endocrine-related diseases, reproductive disorders, skin burns, and cardiovascular conditions. Moreover, we discuss our own clinical trial experiences on targeted therapies using MSCs in a clinical setting, and we propose and discuss the MSC tissue origin concept and how MSC origin may contribute to the role of MSCs in downstream applications, with the ultimate objective of facilitating translational research in regenerative medicine into clinical applications. The mechanisms discussed here support the proposed hypothesis that BM-MSCs are potentially good candidates for brain and spinal cord injury treatment, AT-MSCs are potentially good candidates for reproductive disorder treatment and skin regeneration, and UC-MSCs are potentially good candidates for pulmonary disease and acute respiratory distress syndrome treatment.


Assuntos
Células-Tronco Mesenquimais , Tecido Adiposo , Diferenciação Celular/genética , Humanos , Medicina Regenerativa , Cordão Umbilical
5.
Int J Mol Sci ; 23(10)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35628663

RESUMO

Pluripotent stem cells (PSC) possess unlimited proliferation, self-renewal, and a differentiation capacity spanning all germ layers. Appropriate culture conditions are important for the maintenance of self-renewal, pluripotency, proliferation, differentiation, and epigenetic states. Oxygen concentrations vary across different human tissues depending on precise cell location and proximity to vascularisation. The bulk of PSC culture-based research is performed in a physiologically hyperoxic, air oxygen (21% O2) environment, with numerous reports now detailing the impact of a physiologic normoxia (physoxia), low oxygen culture in the maintenance of stemness, survival, morphology, proliferation, differentiation potential, and epigenetic profiles. Epigenetic mechanisms affect multiple cellular characteristics including gene expression during development and cell-fate determination in differentiated cells. We hypothesized that epigenetic marks are responsive to a reduced oxygen microenvironment in PSCs and their differentiation progeny. Here, we evaluated the role of physoxia in PSC culture, the regulation of DNA methylation (5mC (5-methylcytosine) and 5hmC (5-hydroxymethylcytosine)), and the expression of regulatory enzyme DNMTs and TETs. Physoxia enhanced the functional profile of PSC including proliferation, metabolic activity, and stemness attributes. PSCs cultured in physoxia revealed the significant downregulation of DNMT3B, DNMT3L, TET1, and TET3 vs. air oxygen, accompanied by significantly reduced 5mC and 5hmC levels. The downregulation of DNMT3B was associated with an increase in its promoter methylation. Coupled with the above, we also noted decreased HIF1A but increased HIF2A expression in physoxia-cultured PSCs versus air oxygen. In conclusion, PSCs display oxygen-sensitive methylation patterns that correlate with the transcriptional and translational regulation of the de novo methylase DNMT3B.


Assuntos
Metilação de DNA , Oxigênio , Células-Tronco Pluripotentes , DNA (Citosina-5-)-Metiltransferases/genética , Dioxigenases/genética , Epigênese Genética , Humanos , Oxigenases de Função Mista/genética , Oxigênio/fisiologia , Células-Tronco Pluripotentes/metabolismo , Proteínas Proto-Oncogênicas/genética , DNA Metiltransferase 3B
6.
J Tissue Eng ; 12: 20417314211056132, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733464

RESUMO

The human mesenchymal stem cell (hMSC) secretome has pleiotropic effects which underpin their therapeutic potential. hMSC serum-free conditioned media (SFCM) has been determined to contain a variety of cytokines with roles in regeneration and suppression of inflammation. Physiological oxygen (physoxia) has been demonstrated to impact upon a number of facets of hMSC biology and we hypothesized that the secretome would be similarly modified. We tested a range of oxygen conditions; 21% O2 (air oxygen (AO)), 2% O2 (intermittent hypoxia (IH)) and 2% O2 Workstation (physoxia (P)) to evaluate their effect on hMSC secretome profiles. Total protein content of secretome was upregulated in IH and P (>3 fold vs AO) and IH (>1 fold vs P). Focused cytokine profiling indicated global upregulation in IH of all 31 biomolecules tested in comparison to AO and P with basic-nerve growth factor (bNGF) and granulocyte colony-stimulating factor (GCSF) (>3 fold vs AO) and bNGF and Rantes (>3 fold vs P) of note. Similarly, upregulation of interferon gamma-induced protein 10 (IP10) was noted in P (>3 fold vs AO). Interleukin-2 (IL2) and Rantes (in AO and P) and adiponectin, IL17a, and epidermal growth factor (EGF) (in AO only) were entirely absent or below detection limits. Quantitative analysis validated the pattern of IH-induced upregulation in vascular endothelial growth factor (VEGF), placental growth factor-1 (PIGF1), Tumor necrosis factor alpha (TNFa), IL2, IL4, and IL10 when compared to AO and P. In summary, modulation of environmental oxygen alters both secretome concentration and composition. This consideration will likely impact on delivering improved mechanistic understanding and potency effects of hMSC-based therapeutics.

7.
Molecules ; 26(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34641476

RESUMO

OBJECTIVES: The toxicity of chemotherapeutic anticancer drugs is a serious issue in clinics. Drug discovery from edible and medicinal plants represents a promising approach towards finding safer anticancer therapeutics. Justicia insularis T. Anderson (Acanthaceae) is an edible and medicinal plant in Nigeria. This study aims to discover cytotoxic compounds from this rarely explored J. insularis and investigate their underlying mechanism of action. METHODS: The cytotoxicity of the plant extract was evaluated in human ovarian cancer cell lines and normal human ovarian surface epithelia (HOE) cells using a sulforhodamine B assay. Bioassay-guided isolation was carried out using column chromatography including HPLC, and the isolated natural products were characterized using GC-MS, LC-HRMS, and 1D/2D NMR techniques. Induction of apoptosis was evaluated using Caspase 3/7, 8, and 9, and Annexin V and PI based flow cytometry assays. SwissADME and SwissTargetPrediction web tools were used to predict the molecular properties and possible protein targets of identified active compounds. Key finding: The two cytotoxic compounds were identified as clerodane diterpenoids: 16(α/ß)-hydroxy-cleroda-3,13(14)Z-dien-15,16-olide (1) and 16-oxo-cleroda-3,13(14)E-dien-15-oic acid (2) from the Acanthaceous plant for the first time. Compound 1 was a very abundant compound (0.7% per dry weight of plant material) and was shown to be more potent than compound 2 with IC50 values in the micromolar range against OVCAR-4 and OVCAR-8 cancer cells. Compounds 1 and 2 were less cytotoxic to HOE cell line. Both compounds induced apoptosis by increasing caspase 3/7 activities in a concentration dependent manner. Compound 1 further increased caspase 8 and 9 activities and apoptosis cell populations. Compounds 1 and 2 are both drug like, and compound 1 may target various proteins including a kinase. CONCLUSIONS: Clerodane diterpenoids (1 and 2) in J. insularis were identified as cytotoxic to ovarian cancer cells via the induction of apoptosis, providing an abundant and valuable source of hit compounds for the treatment of ovarian cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Diterpenos Clerodânicos/farmacologia , Justicia/química , Neoplasias Ovarianas/tratamento farmacológico , Extratos Vegetais/farmacologia , Apoptose/efeitos dos fármacos , Descoberta de Drogas , Feminino , Humanos , Neoplasias Ovarianas/patologia , Folhas de Planta/química , Células Tumorais Cultivadas
8.
Stem Cell Res Ther ; 12(1): 517, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34579781

RESUMO

BACKGROUND: Very small embryonic-like stem cells (VSELs) are a rare population within the ovarian epithelial surface. They contribute to postnatal oogenesis as they have the ability to generate immature oocytes and resist the chemotherapy. These cells express markers of pluripotent embryonic and primordial germ cells. OBJECTIVE: We aimed to explore the capability of VSELs in restoring the postnatal oogenesis of chemo-ablated rat ovaries treated with bone marrow-derived mesenchymal stem cells (BM-MSCs) combined with pregnant mare serum gonadotropin (PMSG). METHODS: Female albino rats were randomly assigned across five groups: I (control), II (chemo-ablation), III (chemo-ablation + PMSG), IV (chemo-ablation + MSCs), and V (chemo-ablation + PMSG + MSCs). Postnatal oogenesis was assessed through measurement of OCT4, OCT4A, Scp3, Mvh, Nobox, Dazl4, Nanog, Sca-1, FSHr, STRA8, Bax, miR143, and miR376a transcript levels using qRT-PCR. Expression of selected key proteins were established as further confirmation of transcript expression changes. Histopathological examination and ovarian hormonal assessment were determined. RESULTS: Group V displayed significant upregulation of all measured genes when compared with group II, III or IV. Protein expression confirmed the changes in transcript levels as group V displayed the highest average density in all targeted proteins. These results were confirmed histologically by the presence of cuboidal germinal epithelium, numerous primordial, unilaminar, and mature Graafian follicles in group V. CONCLUSION: VSELs can restore the postnatal oogenesis in chemo-ablated ovaries treated by BM-MSCs combined with PMSG.


Assuntos
Células-Tronco Mesenquimais , Ovário , Animais , Medula Óssea , Células-Tronco Embrionárias , Feminino , Gonadotropinas , Oogênese , Ratos
9.
Emerg Top Life Sci ; 5(4): 497-505, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34486664

RESUMO

The epigenetic nature of telomeres is still controversial and different human cell lines might show diverse histone marks at telomeres. Epigenetic modifications regulate telomere length and telomerase activity that influence telomere structure and maintenance. Telomerase is responsible for telomere elongation and maintenance and is minimally composed of the catalytic protein component, telomerase reverse transcriptase (TERT) and template forming RNA component, telomerase RNA (TERC). TERT promoter mutations may underpin some telomerase activation but regulation of the gene is not completely understood due to the complex interplay of epigenetic, transcriptional, and posttranscriptional modifications. Pluripotent stem cells (PSCs) can maintain an indefinite, immortal, proliferation potential through their endogenous telomerase activity, maintenance of telomere length, and a bypass of replicative senescence in vitro. Differentiation of PSCs results in silencing of the TERT gene and an overall reversion to a mortal, somatic cell phenotype. The precise mechanisms for this controlled transcriptional silencing are complex. Promoter methylation has been suggested to be associated with epigenetic control of telomerase regulation which presents an important prospect for understanding cancer and stem cell biology. Control of down-regulation of telomerase during differentiation of PSCs provides a convenient model for the study of its endogenous regulation. Telomerase reactivation has the potential to reverse tissue degeneration, drive repair, and form a component of future tissue engineering strategies. Taken together it becomes clear that PSCs provide a unique system to understand telomerase regulation fully and drive this knowledge forward into aging and therapeutic application.


Assuntos
Células-Tronco Pluripotentes , Telomerase , Senescência Celular , Epigênese Genética , Células-Tronco Pluripotentes/metabolismo , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , Telômero/metabolismo
10.
Cells ; 10(8)2021 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-34440934

RESUMO

In the field of tissue engineering, progress has been made towards the development of new treatments for cartilage and bone defects. However, in vitro culture conditions for human bone marrow mesenchymal stromal cells (hBMSCs) have not yet been fully defined. To improve our understanding of cartilage and bone in vitro differentiation, we investigated the effect of culture conditions on hBMSC differentiation. We hypothesized that the use of two different culture media including specific growth factors, TGFß1 or BMP2, as well as low (2% O2) or high (20% O2) oxygen tension, would improve the chondrogenic and osteogenic potential, respectively. Chondrogenic and osteogenic differentiation of hBMSCs isolated from multiple donors and expanded under the same conditions were directly compared. Chondrogenic groups showed a notable upregulation of chondrogenic markers compared with osteogenic groups. Greater sGAG production and deposition, and collagen type II and I accumulation occurred for chondrogenic groups. Chondrogenesis at 2% O2 significantly reduced ALP gene expression and reduced type I collagen deposition, producing a more stable and less hypertrophic chondrogenic phenotype. An O2 tension of 2% did not inhibit osteogenic differentiation at the protein level but reduced ALP and OC gene expression. An upregulation of ALP and OC occurred during osteogenesis in BMP2 containing media under 20% O2; BMP2 free osteogenic media downregulated ALP and also led to higher sGAG release. A higher mineralization was observed in the presence of BMP2 during osteogenesis. This study demonstrates how the modulation of O2 tension, combined with tissue-specific growth factors and media composition can be tailored in vitro to promote chondral or endochondral differentiation while using the same donor cell population.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Condrogênese/fisiologia , Colágeno Tipo I/metabolismo , Colágeno Tipo II/metabolismo , Glicosaminoglicanos/metabolismo , Humanos , Imuno-Histoquímica , Osteogênese/fisiologia , Engenharia Tecidual
11.
Cancers (Basel) ; 13(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802026

RESUMO

Telomerase was first described by Greider and Blackburn in 1984, a discovery ultimately recognized by the Nobel Prize committee in 2009. The three decades following on from its discovery have been accompanied by an increased understanding of the fundamental mechanisms of telomerase activity, and its role in telomere biology. Telomerase has a clearly defined role in telomere length maintenance and an established influence on DNA replication, differentiation, survival, development, apoptosis, tumorigenesis, and a further role in therapeutic resistance in human stem and cancer cells including those of breast and cervical origin. TERT encodes the catalytic subunit and rate-limiting factor for telomerase enzyme activity. The mechanisms of activation or silencing of TERT remain open to debate across somatic, cancer, and stem cells. Promoter mutations upstream of TERT may promote dysregulated telomerase activation in tumour cells but additional factors including epigenetic, transcriptional and posttranscriptional modifications also have a role to play. Previous systematic analysis indicated methylation and mutation of the TERT promoter in 53% and 31%, respectively, of TERT expressing cancer cell lines supporting the concept of a key role for epigenetic alteration associated with TERT dysregulation and cellular transformation. Epigenetic regulators including DNA methylation, histone modification, and non-coding RNAs are now emerging as drivers in the regulation of telomeres and telomerase activity. Epigenetic regulation may be responsible for reversible silencing of TERT in several biological processes including development and differentiation, and increased TERT expression in cancers. Understanding the epigenetic mechanisms behind telomerase regulation holds important prospects for cancer treatment, diagnosis and prognosis. This review will focus on the role of epigenetics in telomerase regulation.

12.
Cells ; 10(5)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925659

RESUMO

The application of physiological oxygen (physoxia) concentrations is becoming increasingly commonplace within a mammalian stem cell culture. Human mesenchymal stem cells (hMSCs) attract widespread interest for clinical application due to their unique immunomodulatory, multi-lineage potential, and regenerative capacities. Descriptions of the impact of physoxia on global DNA methylation patterns in hMSCs and the activity of enzymatic machinery responsible for its regulation remain limited. Human bone marrow-derived mesenchymal stem cells (BM-hMSCs, passage 1) isolated in reduced oxygen conditions displayed an upregulation of SOX2 in reduced oxygen conditions vs. air oxygen (21% O2, AO), while no change was noted for either OCT-4 or NANOG. DNA methylation marks 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) showed decreases in 2% O2 environment (workstation) (2% WKS). DNMT3B (DNA methyltransferase 3B) and TET1 (Ten-eleven translocation enzyme 1) displayed reduced transcription in physoxia. Consistent with transcriptional downregulation, we noted increased promoter methylation levels of DNMT3B in 2% WKS accompanied by reduced DNMT3B and TET1 protein expression. Finally, a decrease in HIF1A (Hypoxia-inducible factor 1A) gene expression in 2% WKS environment correlated with protein levels, while HIF2A was significantly higher in physoxia correlated with protein expression levels vs. AO. Together, these data have demonstrated, for the first time, that global 5mC, 5hmC, and DNMT3B are oxygen-sensitive in hMSCs. Further insights into the appropriate epigenetic regulation within hMSCs may enable increased safety and efficacy development within the therapeutic ambitions.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Células-Tronco Mesenquimais/enzimologia , Oxigênio/metabolismo , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Adulto , Ar , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Células Cultivadas , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/genética , Feminino , Regulação da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Imunofenotipagem , Masculino , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Oxigenases de Função Mista/metabolismo , Proteína Homeobox Nanog/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Regulação para Cima , DNA Metiltransferase 3B
13.
Int J Mol Sci ; 23(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35008555

RESUMO

Mesenchymal stem cells (MSCs) immunomodulate inflammatory responses through paracrine signalling, including via secretion of extracellular vesicles (EVs) in the cell secretome. We evaluated the therapeutic potential of MSCs-derived small EVs in an antigen-induced model of arthritis (AIA). EVs isolated from MSCs cultured normoxically (21% O2, 5% CO2), hypoxically (2% O2, 5% CO2) or with a pro-inflammatory cytokine cocktail were applied into the AIA model. Disease pathology was assessed post-arthritis induction through swelling and histopathological analysis of synovial joint structure. Activated CD4+ T cells from healthy mice were cultured with EVs or MSCs to assess deactivation capabilities prior to application of standard EVs in vivo to assess T cell polarisation within the immune response to AIA. All EVs treatments reduced knee-joint swelling whilst only normoxic and pro-inflammatory primed EVs improved histopathological outcomes. In vitro culture with EVs did not achieve T cell deactivation. Polarisation towards CD4+ helper cells expressing IL17a (Th17) was reduced when normoxic and hypoxic EV treatments were applied in vitro. Normoxic EVs applied into the AIA model reduced Th17 polarisation and improved Regulatory T cell (Treg):Th17 homeostatic balance. Normoxic EVs present the optimal strategy for broad therapeutic benefit. EVs present an effective novel technology with the potential for cell-free therapeutic translation.


Assuntos
Artrite/imunologia , Vesículas Extracelulares/imunologia , Hipóxia/imunologia , Inflamação/imunologia , Células-Tronco Mesenquimais/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Proliferação de Células/fisiologia , Células Cultivadas , Citocinas/imunologia , Humanos , Imunomodulação/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Secretoma/imunologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia
14.
Sci Rep ; 10(1): 20487, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33235244

RESUMO

Rheumatoid arthritis (RA) is a debilitating and painful inflammatory autoimmune disease characterised by the accumulation of leukocytes in the synovium, cartilage destruction and bone erosion. The immunomodulatory effects of bone marrow derived mesenchymal stem cells (MSCs) has been widely studied and the recent observations that syndecan-3 (SDC3) is selectively pro-inflammatory in the joint led us to hypothesise that SDC3 might play an important role in MSC biology. MSCs isolated from bone marrow of wild type and Sdc3-/- mice were used to assess immunophenotype, differentiation, adhesion and migration properties and cell signalling pathways. While both cell types show similar differentiation potential and forward scatter values, the cell complexity in wild type MSCs was significantly higher than in Sdc3-/- cells and was accompanied by lower spread surface area. Moreover, Sdc3-/- MSCs adhered more rapidly to collagen type I and showed a dramatic increase in AKT phosphorylation, accompanied by a decrease in ERK1/2 phosphorylation compared with control cells. In a mouse model of antigen-induced inflammatory arthritis, intraarticular injection of Sdc3-/- MSCs yielded enhanced efficacy compared to injection of wild type MSCs. In conclusion, our data suggest that syndecan-3 regulates MSC adhesion and efficacy in inflammatory arthritis, likely via induction of the AKT pathway.


Assuntos
Artrite/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Deleção de Genes , Inflamação/patologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Sindecana-3/metabolismo , Animais , Artrite/complicações , Artrite/terapia , Células da Medula Óssea/metabolismo , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Colágeno/farmacologia , Modelos Animais de Doenças , Inflamação/complicações , Inflamação/terapia , Masculino , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
15.
Cells ; 9(5)2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32443833

RESUMO

We developed a (three-dimensional) 3D scaffold, we named HY-FIB, incorporating a force-transmission band of braided hyaluronate embedded in a cell localizing fibrin hydrogel and poly-lactic-co-glycolic acid (PLGA) nanocarriers as transient components for growth factor controlled delivery. The tenogenic supporting capacity of HY-FIB on human-Bone Marrow Mesenchymal Stem Cells (hBM-MSCs) was explored under static conditions and under bioreactor-induced cyclic strain conditions. HY-FIB elasticity enabled to deliver a mean shear stress of 0.09 Pa for 4 h/day. Tendon and cytokine marker expression by hBM-MSCs were studied. Results: hBM-MSCs embedded in HY-FIB and subjected to mechanical stimulation, resulted in a typical tenogenic phenotype, as indicated by type 1 Collagen fiber immunofluorescence. RT-qPCR showed an increase of type 1 Collagen, scleraxis, and decorin gene expression (3-fold, 1600-fold, and 3-fold, respectively, at day 11) in dynamic conditions. Cells also showed pro-inflammatory (IL-6, TNF, IL-12A, IL-1ß) and anti-inflammatory (IL-10, TGF-ß1) cytokine gene expressions, with a significant increase of anti-inflammatory cytokines in dynamic conditions (IL-10 and TGF-ß1 300-fold and 4-fold, respectively, at day 11). Mechanical signaling, conveyed by HY-FIB to hBM-MSCs, promoted tenogenic gene markers expression and a pro-repair cytokine balance. The results provide strong evidence in support of the HY-FIB system and its interaction with cells and its potential for use as a predictive in vitro model.


Assuntos
Biomarcadores/metabolismo , Citocinas/metabolismo , Fibrina/química , Ácido Hialurônico/química , Células-Tronco Mesenquimais/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Tendões/metabolismo , Alicerces Teciduais/química , Adulto , Reatores Biológicos , Células Cultivadas , Microambiente Celular , Colágeno/metabolismo , Portadores de Fármacos/química , Regulação da Expressão Gênica , Fator 5 de Diferenciação de Crescimento/metabolismo , Humanos , Nanopartículas/química
16.
EMBO Mol Med ; 12(1): e10233, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31782624

RESUMO

Severe pulmonary infection is a major threat to human health accompanied by substantial medical costs, prolonged inpatient requirements, and high mortality rates. New antimicrobial therapeutic strategies are urgently required to address the emergence of antibiotic resistance and persistent bacterial infections. In this study, we show that the constitutive expression of a native antimicrobial peptide LL-37 in transgenic mice aids in clearing Pseudomonas aeruginosa (PAO1), a major pathogen of clinical pulmonary infection. Orthotopic transplantation of adult mouse distal airway stem cells (DASCs), genetically engineered to express LL-37, into injured mouse lung foci enabled large-scale incorporation of cells and long-term release of the host defense peptide, protecting the mice from bacterial pneumonia and hypoxemia. Further, correlates of DASCs in adult humans were isolated, expanded, and genetically engineered to demonstrate successful construction of an anti-infective artificial lung. Together, our stem cell-based gene delivery therapeutic platform proposes a new strategy for addressing recurrent pulmonary infections with future translational opportunities.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Escherichia coli , Pneumopatias/microbiologia , Infecções por Pseudomonas , Transplante de Células-Tronco , Animais , Feminino , Pneumopatias/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Infecções por Pseudomonas/prevenção & controle , Pseudomonas aeruginosa , Ratos , Ratos Sprague-Dawley , Catelicidinas
17.
J Tissue Eng Regen Med ; 14(2): 243-256, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31701635

RESUMO

Women with gestational diabetes mellitus (GDM), and their offspring, are at high risk of developing type 2 diabetes. Chorionic (CMSCs) and amniotic mesenchymal stem cells (AMSCs) derived from placental membranes provide a source of autologous stem cells for potential diabetes therapy. We established an approach for the CMSC/AMSC-based generation of functional insulin-producing cells (IPCs). CMSCs/AMSCs displayed significantly elevated levels of NANOG and OCT4 versus bone marrow-derived MSCs, indicating a potentially broad differentiation capacity. Exposure of Healthy- and GDM-CMSCs/AMSCs to long-term high-glucose culture resulted in significant declines in viability accompanied by elevation, markedly so in GDM-CMSCs/AMSCs, of senescence/stress markers. Short-term high-glucose culture promoted pancreatic transcription factor expression when coupled to a 16-day step-wise differentiation protocol; activin A, retinoic acid, epidermal growth factor, glucagon-like peptide-1 and other chemical components, generated functional IPCs from both Healthy- and GDM-CMSCs. Healthy-/GDM-AMSCs displayed betacellulin-sensitive insulin expression, which was not secreted upon glucose challenge. The pathophysiological state accompanying GDM may cause irreversible impairment to endogenous AMSCs; however, GDM-CMSCs possess comparable therapeutic potential with Healthy-CMSCs and can be effectively reprogrammed into insulin-secreting cells.


Assuntos
Diabetes Gestacional/metabolismo , Células Secretoras de Insulina/citologia , Insulina/metabolismo , Placenta/citologia , Células-Tronco/citologia , Âmnio/citologia , Diferenciação Celular , Linhagem Celular , Linhagem da Célula , Sobrevivência Celular , Senescência Celular , Fator de Crescimento Epidérmico/metabolismo , Feminino , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Microscopia Confocal , Placenta/metabolismo , Gravidez , Transativadores/metabolismo
18.
Stem Cell Res ; 40: 101537, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31422237

RESUMO

Placental membrane-derived mesenchymal stem cells (MSCs), with the advantages of being non-invasive and having fewer ethical issues, are a promising source for cell therapy. Gestational diabetes (GDM) alters the uterine environment and may affect the therapeutic potential of MSCs derived from placenta. Therefore, we evaluated the biological properties of amniotic (AMSCs) and chorionic membrane MSCs (CMSCs) from human GDM placenta in order to explore their therapeutic potential. In comparison of GDM-/Healthy- CMSCs and AMSCs, the immunophenotypes and typical stellate morphology of MSC were similar in CMSCs irrespective of disease state while the MSC morphology in GDM-AMSCs was less evident. GDM- and Healthy- CMSCs displayed an enhanced proliferation rate and tri-lineage differentiation capacity compared with AMSCs. Notably, GDM-CMSCs had a significantly increased adipogenic ability than Healthy-CMSCs accompanied by increased transcriptional responsiveness of PPARγ and ADIPOQ induction. The secretome effect of Healthy- and GDM- CMSCs/AMSCs by using conditioned media and coculture experiments, suggests that GDM- and Healthy- CMSCs provided an equivalent immunoregulatory effect on suppressing T-cells activation but a reduced effect of GDM-CMSCs on macrophage regulation. However, Healthy- and GDM- CMSCs displayed a superior immunomodulatory capacity in regulation of both T-cells and macrophages than AMSCs. In summary, we highlight the importance of the maternal GDM intrauterine environment during pregnancy and its impact on CMSCs/AMSCs proliferation ability, CMSCs adipogenic potential, and macrophage regulatory capacity.


Assuntos
Diferenciação Celular , Proliferação de Células , Diabetes Gestacional/patologia , Imunomodulação , Células-Tronco Mesenquimais/metabolismo , Adipogenia/efeitos dos fármacos , Adiponectina/genética , Adiponectina/metabolismo , Adulto , Âmnio/citologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Feminino , Humanos , Imunomodulação/efeitos dos fármacos , Recém-Nascido , Masculino , Células-Tronco Mesenquimais/citologia , PPAR gama/genética , PPAR gama/metabolismo , Placenta/citologia , Gravidez , Células THP-1
19.
Front Cell Dev Biol ; 7: 4, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30761299

RESUMO

While oxygen is critical to the continued existence of complex organisms, extreme levels of oxygen within a system, known as hypoxia (low levels of oxygen) and hyperoxia (excessive levels of oxygen), potentially promote stress within a defined biological environment. The consequences of tissue hypoxia, a result of a defective oxygen supply, vary in response to the gravity, extent and environment of the malfunction. Persistent pathological hypoxia is incompatible with normal biological functions, and as a result, multicellular organisms have been compelled to develop both organism-wide and cellular-level hypoxia solutions. Both direct, including oxidative phosphorylation down-regulation and inhibition of fatty-acid desaturation, and indirect processes, including altered hypoxia-sensitive transcription factor expression, facilitate the metabolic modifications that occur in response to hypoxia. Due to the dysfunctional vasculature associated with large areas of some cancers, sections of these tumors continue to develop in hypoxic environments. Crucial to drug development, a robust understanding of the significance of these metabolism changes will facilitate our understanding of cancer cell survival. This review defines our current knowledge base of several of the hypoxia-instigated modifications in cancer cell metabolism and exemplifies the correlation between metabolic change and its support of the hypoxic-adapted malignancy.

20.
Stem Cells Dev ; 27(19): 1303-1321, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30003826

RESUMO

Most cells in the human body, including human mesenchymal stem cells (hMSCs), have evolved to survive and function in a low physiological oxygen (O2) environment. Investigators have become increasingly aware of the effects of O2 levels on hMSC biology and culture and are mimicking the natural niche of these cells in vitro to improve cell culture yields. This presents many challenges in relation to hMSC identity and function and in the maintenance of a controlled O2 environment for cell culture. The aim of this review was to discuss an "hMSC checklist" as a guide to establishing which identity and potency assays to implement when studying hMSCs. The checklist includes markers, differentiation potential, proliferation and growth, attachment and migration, genomic stability, and paracrine activity. Evidence drawn from the current literature demonstrates that low O2 environments could improve most "hMSC checklist" attributes. However, there are substantial inconsistencies around both the terminology and the equipment used in low O2 studies. Therefore, "hypoxia" as a term and as a culture condition is discussed. The biology of short-term (acute) versus long-term (chronic) hypoxia is considered, and a nascent hypothesis to explain the behavior of hMSCs in long-term hypoxia is presented. It is hoped that by establishing an ongoing discourse and driving toward a regulatory recognizable "hMSC checklist," we may be better able to provide the patient population with safe and efficacious regenerative treatments.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Oxigênio/metabolismo , Cultura Primária de Células/métodos , Hipóxia Celular , Meios de Cultura/química , Humanos , Células-Tronco Mesenquimais/citologia , Oxigênio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA