Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Immunol ; 25(5): 847-859, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658806

RESUMO

Immune cells need to sustain a state of constant alertness over a lifetime. Yet, little is known about the regulatory processes that control the fluent and fragile balance that is called homeostasis. Here we demonstrate that JAK-STAT signaling, beyond its role in immune responses, is a major regulator of immune cell homeostasis. We investigated JAK-STAT-mediated transcription and chromatin accessibility across 12 mouse models, including knockouts of all STAT transcription factors and of the TYK2 kinase. Baseline JAK-STAT signaling was detected in CD8+ T cells and macrophages of unperturbed mice-but abrogated in the knockouts and in unstimulated immune cells deprived of their normal tissue context. We observed diverse gene-regulatory programs, including effects of STAT2 and IRF9 that were independent of STAT1. In summary, our large-scale dataset and integrative analysis of JAK-STAT mutant and wild-type mice uncovered a crucial role of JAK-STAT signaling in unstimulated immune cells, where it contributes to a poised epigenetic and transcriptional state and helps prepare these cells for rapid response to immune stimuli.


Assuntos
Homeostase , Janus Quinases , Macrófagos , Camundongos Knockout , Fatores de Transcrição STAT , Transdução de Sinais , Animais , Camundongos , Macrófagos/imunologia , Macrófagos/metabolismo , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/genética , Camundongos Endogâmicos C57BL , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , TYK2 Quinase/metabolismo , TYK2 Quinase/genética , Regulação da Expressão Gênica
2.
Nat Genet ; 55(9): 1542-1554, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37580596

RESUMO

Cellular differentiation requires extensive alterations in chromatin structure and function, which is elicited by the coordinated action of chromatin and transcription factors. By contrast with transcription factors, the roles of chromatin factors in differentiation have not been systematically characterized. Here, we combine bulk ex vivo and single-cell in vivo CRISPR screens to characterize the role of chromatin factor families in hematopoiesis. We uncover marked lineage specificities for 142 chromatin factors, revealing functional diversity among related chromatin factors (i.e. barrier-to-autointegration factor subcomplexes) as well as shared roles for unrelated repressive complexes that restrain excessive myeloid differentiation. Using epigenetic profiling, we identify functional interactions between lineage-determining transcription factors and several chromatin factors that explain their lineage dependencies. Studying chromatin factor functions in leukemia, we show that leukemia cells engage homeostatic chromatin factor functions to block differentiation, generating specific chromatin factor-transcription factor interactions that might be therapeutically targeted. Together, our work elucidates the lineage-determining properties of chromatin factors across normal and malignant hematopoiesis.


Assuntos
Cromatina , Leucemia , Humanos , Cromatina/genética , Linhagem da Célula/genética , Hematopoese/genética , Diferenciação Celular/genética , Fatores de Transcrição/genética
3.
Immunity ; 56(8): 1809-1824.e10, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37499656

RESUMO

Complement factor H (CFH) negatively regulates consumption of complement component 3 (C3), thereby restricting complement activation. Genetic variants in CFH predispose to chronic inflammatory disease. Here, we examined the impact of CFH on atherosclerosis development. In a mouse model of atherosclerosis, CFH deficiency limited plaque necrosis in a C3-dependent manner. Deletion of CFH in monocyte-derived inflammatory macrophages propagated uncontrolled cell-autonomous C3 consumption without downstream C5 activation and heightened efferocytotic capacity. Among leukocytes, Cfh expression was restricted to monocytes and macrophages, increased during inflammation, and coincided with the accumulation of intracellular C3. Macrophage-derived CFH was sufficient to dampen resolution of inflammation, and hematopoietic deletion of CFH in atherosclerosis-prone mice promoted lesional efferocytosis and reduced plaque size. Furthermore, we identified monocyte-derived inflammatory macrophages expressing C3 and CFH in human atherosclerotic plaques. Our findings reveal a regulatory axis wherein CFH controls intracellular C3 levels of macrophages in a cell-autonomous manner, evidencing the importance of on-site complement regulation in the pathogenesis of inflammatory diseases.


Assuntos
Aterosclerose , Complemento C3 , Animais , Humanos , Camundongos , Aterosclerose/metabolismo , Complemento C3/genética , Complemento C3/metabolismo , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Inflamação , Macrófagos/metabolismo
4.
Nat Commun ; 14(1): 3620, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365178

RESUMO

Metastasis is the major cause of cancer-related deaths. Neuroblastoma (NB), a childhood tumor has been molecularly defined at the primary cancer site, however, the bone marrow (BM) as the metastatic niche of NB is poorly characterized. Here we perform single-cell transcriptomic and epigenomic profiling of BM aspirates from 11 subjects spanning three major NB subtypes and compare these to five age-matched and metastasis-free BM, followed by in-depth single cell analyses of tissue diversity and cell-cell interactions, as well as functional validation. We show that cellular plasticity of NB tumor cells is conserved upon metastasis and tumor cell type composition is NB subtype-dependent. NB cells signal to the BM microenvironment, rewiring via macrophage mgration inhibitory factor and midkine signaling specifically monocytes, which exhibit M1 and M2 features, are marked by activation of pro- and anti-inflammatory programs, and express tumor-promoting factors, reminiscent of tumor-associated macrophages. The interactions and pathways characterized in our study provide the basis for therapeutic approaches that target tumor-to-microenvironment interactions.


Assuntos
Neoplasias da Medula Óssea , Neuroblastoma , Humanos , Criança , Medula Óssea/patologia , Monócitos/metabolismo , Transcriptoma , Epigenômica , Neoplasias da Medula Óssea/genética , Neoplasias da Medula Óssea/metabolismo , Neoplasias da Medula Óssea/patologia , Neuroblastoma/metabolismo , Microambiente Tumoral/genética
5.
Sci Signal ; 15(764): eabq5389, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36512641

RESUMO

Promoters of antimicrobial genes function as logic boards, integrating signals of innate immune responses. One such set of genes is stimulated by interferon (IFN) signaling, and the expression of these genes [IFN-stimulated genes (ISGs)] can be further modulated by cell stress-induced pathways. Here, we investigated the global effect of stress-induced p38 mitogen-activated protein kinase (MAPK) signaling on the response of macrophages to IFN. In response to cell stress that coincided with IFN exposure, the p38 MAPK-activated transcription factors CREB and c-Jun, in addition to the IFN-activated STAT family of transcription factors, bound to ISGs. In addition, p38 MAPK signaling induced activating histone modifications at the loci of ISGs and stimulated nuclear translocation of the CREB coactivator CRTC3. These actions synergistically enhanced ISG expression. Disrupting this synergy with p38 MAPK inhibitors improved the viability of macrophages infected with Listeria monocytogenes. Our findings uncover a mechanism of transcriptional synergism and highlight the biological consequences of coincident stress-induced p38 MAPK and IFN-stimulated signal transduction.


Assuntos
Interferon gama , Interferons , Interferons/genética , Interferons/farmacologia , Interferons/metabolismo , Interferon gama/metabolismo , Macrófagos/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Transcrição Gênica , Fatores de Transcrição/metabolismo , Fosforilação
6.
J Exp Med ; 218(4)2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33561194

RESUMO

T cells in human skin play an important role in the immune defense against pathogens and tumors. T cells are present already in fetal skin, where little is known about their cellular phenotype and biological function. Using single-cell analyses, we identified a naive T cell population expressing αß and γδ T cell receptors (TCRs) that was enriched in fetal skin and intestine but not detected in other fetal organs and peripheral blood. TCR sequencing data revealed that double-positive (DP) αßγδ T cells displayed little overlap of CDR3 sequences with single-positive αß T cells. Gene signatures, cytokine profiles and in silico receptor-ligand interaction studies indicate their contribution to early skin development. DP αßγδ T cells were phosphoantigen responsive, suggesting their participation in the protection of the fetus against pathogens in intrauterine infections. Together, our analyses unveil a unique cutaneous T cell type within the native skin microenvironment and point to fundamental differences in the immune surveillance between fetal and adult human skin.


Assuntos
Feto/imunologia , Vigilância Imunológica , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T gama-delta/genética , Pele/embriologia , Pele/imunologia , Linfócitos T/imunologia , Adulto , Células Cultivadas , Citocinas/metabolismo , Voluntários Saudáveis , Humanos , Intestinos/embriologia , Intestinos/imunologia , Pessoa de Meia-Idade , RNA-Seq/métodos , Análise de Célula Única/métodos , Pele/crescimento & desenvolvimento , Transcriptoma
7.
Sci Immunol ; 6(55)2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483337

RESUMO

Therapeutic options for autoimmune diseases typically consist of broad and targeted immunosuppressive agents. However, sustained clinical benefit is rarely achieved, as the disease phenotype usually returns after cessation of treatment. To better understand tissue-resident immune memory in human disease, we investigated patients with atopic dermatitis (AD) who underwent short-term or long-term treatment with the IL-4Rα blocker dupilumab. Using multi-omics profiling with single-cell RNA sequencing and multiplex proteomics, we found significant decreases in overall skin immune cell counts and normalization of transcriptomic dysregulation in keratinocytes consistent with clearance of disease. However, we identified specific immune cell populations that persisted for up to a year after clinical remission while being absent from healthy controls. These populations included LAMP3 + CCL22+ mature dendritic cells, CRTH2 + CD161 + T helper ("TH2A") cells, and CRTAM + cytotoxic T cells, which expressed high levels of CCL17 (dendritic cells) and IL13 (T cells). TH2A cells showed a characteristic cytokine receptor constellation with IL17RB, IL1RL1 (ST2), and CRLF2 expression, suggesting that these cells are key responders to the AD-typical epidermal alarmins IL-25, IL-33, and TSLP, respectively. We thus identified disease-linked immune cell populations in resolved AD indicative of a persisting disease memory, facilitating a rapid response system of epidermal-dermal cross-talk between keratinocytes, dendritic cells, and T cells. This observation may help to explain the disease recurrence upon termination of immunosuppressive treatments in AD, and it identifies potential disease memory-linked cell types that may be targeted to achieve a more sustained therapeutic response.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Células Dendríticas/imunologia , Dermatite Atópica/tratamento farmacológico , Linfócitos T Citotóxicos/imunologia , Células Th2/imunologia , Adolescente , Adulto , Anticorpos Monoclonais Humanizados/uso terapêutico , Biópsia , Estudos de Casos e Controles , Comunicação Celular/imunologia , Células Dendríticas/metabolismo , Dermatite Atópica/imunologia , Feminino , Voluntários Saudáveis , Humanos , Memória Imunológica , Subunidade alfa de Receptor de Interleucina-4/antagonistas & inibidores , Subunidade alfa de Receptor de Interleucina-4/metabolismo , Queratinócitos , Masculino , Pessoa de Meia-Idade , RNA-Seq , Análise de Célula Única , Pele/citologia , Pele/efeitos dos fármacos , Pele/imunologia , Pele/patologia , Linfócitos T Citotóxicos/metabolismo , Células Th2/metabolismo , Adulto Jovem
8.
Sci Rep ; 10(1): 18312, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33110138

RESUMO

Glioblastoma might have widespread effects on the neural organization and cognitive function, and even focal lesions may be associated with distributed functional alterations. However, functional changes do not necessarily follow obvious anatomical patterns and the current understanding of this interrelation is limited. In this study, we used resting-state functional magnetic resonance imaging to evaluate changes in global functional connectivity patterns in 15 patients with glioblastoma. For six patients we followed longitudinal trajectories of their functional connectome and structural tumour evolution using bi-monthly follow-up scans throughout treatment and disease progression. In all patients, unilateral tumour lesions were associated with inter-hemispherically symmetric network alterations, and functional proximity of tumour location was stronger linked to distributed network deterioration than anatomical distance. In the longitudinal subcohort of six patients, we observed patterns of network alterations with initial transient deterioration followed by recovery at first follow-up, and local network deterioration to precede structural tumour recurrence by two months. In summary, the impact of focal glioblastoma lesions on the functional connectome is global and linked to functional proximity rather than anatomical distance to tumour regions. Our findings further suggest a relevance for functional network trajectories as a possible means supporting early detection of tumour recurrence.


Assuntos
Neoplasias Encefálicas/patologia , Conectoma , Glioblastoma/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/fisiopatologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/fisiopatologia , Cerebelo/patologia , Cerebelo/fisiopatologia , Neuroimagem Funcional , Glioblastoma/diagnóstico por imagem , Glioblastoma/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Vias Neurais/diagnóstico por imagem , Vias Neurais/patologia , Vias Neurais/fisiopatologia
9.
Genome Biol ; 21(1): 190, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32746932

RESUMO

BACKGROUND: Deep learning has emerged as a versatile approach for predicting complex biological phenomena. However, its utility for biological discovery has so far been limited, given that generic deep neural networks provide little insight into the biological mechanisms that underlie a successful prediction. Here we demonstrate deep learning on biological networks, where every node has a molecular equivalent, such as a protein or gene, and every edge has a mechanistic interpretation, such as a regulatory interaction along a signaling pathway. RESULTS: With knowledge-primed neural networks (KPNNs), we exploit the ability of deep learning algorithms to assign meaningful weights in multi-layered networks, resulting in a widely applicable approach for interpretable deep learning. We present a learning method that enhances the interpretability of trained KPNNs by stabilizing node weights in the presence of redundancy, enhancing the quantitative interpretability of node weights, and controlling for uneven connectivity in biological networks. We validate KPNNs on simulated data with known ground truth and demonstrate their practical use and utility in five biological applications with single-cell RNA-seq data for cancer and immune cells. CONCLUSIONS: We introduce KPNNs as a method that combines the predictive power of deep learning with the interpretability of biological networks. While demonstrated here on single-cell sequencing data, this method is broadly relevant to other research areas where prior domain knowledge can be represented as networks.


Assuntos
Aprendizado Profundo , Análise de Sequência de RNA , Análise de Célula Única , Humanos , Receptores de Antígenos de Linfócitos T , Transdução de Sinais
10.
Nature ; 583(7815): 296-302, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32612232

RESUMO

The mammalian immune system implements a remarkably effective set of mechanisms for fighting pathogens1. Its main components are haematopoietic immune cells, including myeloid cells that control innate immunity, and lymphoid cells that constitute adaptive immunity2. However, immune functions are not unique to haematopoietic cells, and many other cell types display basic mechanisms of pathogen defence3-5. To advance our understanding of immunology outside the haematopoietic system, here we systematically investigate the regulation of immune genes in the three major types of structural cells: epithelium, endothelium and fibroblasts. We characterize these cell types across twelve organs in mice, using cellular phenotyping, transcriptome sequencing, chromatin accessibility profiling and epigenome mapping. This comprehensive dataset revealed complex immune gene activity and regulation in structural cells. The observed patterns were highly organ-specific and seem to modulate the extensive interactions between structural cells and haematopoietic immune cells. Moreover, we identified an epigenetically encoded immune potential in structural cells under tissue homeostasis, which was triggered in response to systemic viral infection. This study highlights the prevalence and organ-specific complexity of immune gene activity in non-haematopoietic structural cells, and it provides a high-resolution, multi-omics atlas of the epigenetic and transcriptional networks that regulate structural cells in the mouse.


Assuntos
Endotélio/imunologia , Células Epiteliais/imunologia , Fibroblastos/imunologia , Regulação da Expressão Gênica/imunologia , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Especificidade de Órgãos/imunologia , Imunidade Adaptativa , Animais , Cromatina/genética , Cromatina/metabolismo , Endotélio/citologia , Epigênese Genética/imunologia , Epigenoma/genética , Células Epiteliais/citologia , Feminino , Fibroblastos/citologia , Regulação da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/imunologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Sistema Imunitário/virologia , Imunidade Inata , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/imunologia , Masculino , Camundongos , Especificidade de Órgãos/genética , Transcrição Gênica/imunologia , Transcriptoma/genética
11.
J Allergy Clin Immunol ; 146(5): 1056-1069, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32344053

RESUMO

BACKGROUND: Atopic dermatitis (AD) is the most common chronic inflammatory skin disease, but its complex pathogenesis is only insufficiently understood, resulting in still limited treatment options. OBJECTIVE: We sought to characterize AD on both transcriptomic and proteomic levels in humans. METHODS: We used skin suction blistering, a painless and nonscarring procedure that can simultaneously sample skin cells and interstitial fluid. We then compared results with conventional biopsies. RESULTS: Suction blistering captured epidermal and most immune cells equally well as biopsies, except for mast cells and nonmigratory CD163+ macrophages that were only present in biopsy isolates. Using single-cell RNA sequencing, we found comparable transcriptional profiles of key inflammatory pathways between blister and biopsy AD, but suction blistering was superior in cell-specific resolution for high-abundance transcripts (KRT1/KRT10, KRT16/KRT6A, S100A8/S100A9), which showed some background signals in biopsy isolates. Compared with healthy controls, we found characteristic upregulation of AD-typical cytokines such as IL13 and IL22 in Th2 and Th22 cells, respectively, but we also discovered these mediators in proliferating T cells and natural killer T cells, that also expressed the antimicrobial cytokine IL26. Overall, not T cells, but myeloid cells were most strongly enriched in AD, and we found dendritic cell (CLEC7A, amphiregulin/AREG, EREG) and macrophage products (CCL13) among the top upregulated proteins in AD blister fluid proteomic analyses. CONCLUSION: These data show that by using cutting-edge technology, suction blistering offers several advantages over conventional biopsies, including better transcriptomic resolution of skin cells, combined with proteomic information from interstitial fluid, unraveling novel inflammatory players that shape the cellular and proteomic microenvironment of AD.


Assuntos
Dermatite Atópica/imunologia , Líquido Extracelular/metabolismo , Perfilação da Expressão Gênica/métodos , Células Mieloides/imunologia , Proteômica/métodos , Análise de Célula Única/métodos , Células Th2/imunologia , Calgranulina A/genética , Movimento Celular , Células Cultivadas , Citocinas/metabolismo , Humanos , Imunomodulação , Queratina-1/genética , Lectinas Tipo C/metabolismo , Proteínas Quimioatraentes de Monócitos/metabolismo , Especificidade de Órgãos
12.
Nat Commun ; 11(1): 577, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31996669

RESUMO

The Bruton tyrosine kinase (BTK) inhibitor ibrutinib provides effective treatment for patients with chronic lymphocytic leukemia (CLL), despite extensive heterogeneity in this disease. To define the underlining regulatory dynamics, we analyze high-resolution time courses of ibrutinib treatment in patients with CLL, combining immune-phenotyping, single-cell transcriptome profiling, and chromatin mapping. We identify a consistent regulatory program starting with a sharp decrease of NF-κB binding in CLL cells, which is followed by reduced activity of lineage-defining transcription factors, erosion of CLL cell identity, and acquisition of a quiescence-like gene signature. We observe patient-to-patient variation in the speed of execution of this program, which we exploit to predict patient-specific dynamics in the response to ibrutinib based on the pre-treatment patient samples. In aggregate, our study describes time-dependent cellular, molecular, and regulatory effects for therapeutic inhibition of B cell receptor signaling in CLL, and it establishes a broadly applicable method for epigenome/transcriptome-based treatment monitoring.


Assuntos
Tirosina Quinase da Agamaglobulinemia/efeitos dos fármacos , Cromatina/genética , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Pirazóis/antagonistas & inibidores , Pirazóis/metabolismo , Pirazóis/uso terapêutico , Pirimidinas/antagonistas & inibidores , Pirimidinas/metabolismo , Pirimidinas/uso terapêutico , Adenina/análogos & derivados , Epigenoma , Epigenômica , Perfilação da Expressão Gênica , Heterogeneidade Genética/efeitos dos fármacos , Humanos , Leucemia Linfocítica Crônica de Células B/imunologia , Aprendizado de Máquina , Piperidinas , Receptores de Antígenos de Linfócitos B/efeitos dos fármacos , Análise de Sequência de RNA , Fatores de Transcrição , Transcriptoma
13.
Cancer Discov ; 9(10): 1406-1421, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31345789

RESUMO

Langerhans cell histiocytosis (LCH) is a rare neoplasm predominantly affecting children. It occupies a hybrid position between cancers and inflammatory diseases, which makes it an attractive model for studying cancer development. To explore the molecular mechanisms underlying the pathophysiology of LCH and its characteristic clinical heterogeneity, we investigated the transcriptomic and epigenomic diversity in primary LCH lesions. Using single-cell RNA sequencing, we identified multiple recurrent types of LCH cells within these biopsies, including putative LCH progenitor cells and several subsets of differentiated LCH cells. We confirmed the presence of proliferative LCH cells in all analyzed biopsies using IHC, and we defined an epigenomic and gene-regulatory basis of the different LCH-cell subsets by chromatin-accessibility profiling. In summary, our single-cell analysis of LCH uncovered an unexpected degree of cellular, transcriptomic, and epigenomic heterogeneity among LCH cells, indicative of complex developmental hierarchies in LCH lesions. SIGNIFICANCE: This study sketches a molecular portrait of LCH lesions by combining single-cell transcriptomics with epigenome profiling. We uncovered extensive cellular heterogeneity, explained in part by an intrinsic developmental hierarchy of LCH cells. Our findings provide new insights and hypotheses for advancing LCH research and a starting point for personalizing therapy.See related commentary by Gruber et al., p. 1343.This article is highlighted in the In This Issue feature, p. 1325.


Assuntos
Epigênese Genética , Epigenômica , Histiocitose de Células de Langerhans/genética , Biomarcadores , Biópsia , Suscetibilidade a Doenças , Epigenômica/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Histiocitose de Células de Langerhans/diagnóstico , Histiocitose de Células de Langerhans/metabolismo , Humanos , Imuno-Histoquímica , Radiografia , Análise de Célula Única
14.
Nat Med ; 24(10): 1611-1624, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30150718

RESUMO

Glioblastoma is characterized by widespread genetic and transcriptional heterogeneity, yet little is known about the role of the epigenome in glioblastoma disease progression. Here, we present genome-scale maps of DNA methylation in matched primary and recurring glioblastoma tumors, using data from a highly annotated clinical cohort that was selected through a national patient registry. We demonstrate the feasibility of DNA methylation mapping in a large set of routinely collected FFPE samples, and we validate bisulfite sequencing as a multipurpose assay that allowed us to infer a range of different genetic, epigenetic, and transcriptional characteristics of the profiled tumor samples. On the basis of these data, we identified subtle differences between primary and recurring tumors, links between DNA methylation and the tumor microenvironment, and an association of epigenetic tumor heterogeneity with patient survival. In summary, this study establishes an open resource for dissecting DNA methylation heterogeneity in a genetically diverse and heterogeneous cancer, and it demonstrates the feasibility of integrating epigenomics, radiology, and digital pathology for a national cohort, thereby leveraging existing samples and data collected as part of routine clinical practice.


Assuntos
Metilação de DNA/genética , Genoma Humano/genética , Glioblastoma/genética , Recidiva Local de Neoplasia/genética , Mapeamento Cromossômico , Progressão da Doença , Epigênese Genética , Feminino , Heterogeneidade Genética , Glioblastoma/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Recidiva Local de Neoplasia/patologia
15.
Nat Commun ; 9(1): 2416, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925830

RESUMO

Controlled macrophage differentiation and activation in the initiation and resolution of inflammation is crucial for averting progression to chronic inflammatory and autoimmune diseases. Here we show a negative feedback mechanism for proinflammatory IFN-γ activation of macrophages driven by macrophage-associated matrix metalloproteinase 12 (MMP12). Through C-terminal truncation of IFN-γ at 135Glu↓Leu136 the IFN-γ receptor-binding site was efficiently removed thereby reducing JAK-STAT1 signaling and IFN-γ activation of proinflammatory macrophages. In acute peritonitis this signature was absent in Mmp12 -/- mice and recapitulated in Mmp12 +/+ mice treated with a MMP12-specific inhibitor. Similarly, loss-of-MMP12 increases IFN-γ-dependent proinflammatory markers and iNOS+/MHC class II+ macrophage accumulation with worse lymphadenopathy, arthritic synovitis and lupus glomerulonephritis. In active human systemic lupus erythematosus, MMP12 levels were lower and IFN-γ higher compared to treated patients or healthy individuals. Hence, macrophage proteolytic truncation of IFN-γ attenuates classical activation of macrophages as a prelude for resolving inflammation.


Assuntos
Interferon gama/metabolismo , Nefrite Lúpica/imunologia , Ativação de Macrófagos/imunologia , Metaloproteinase 12 da Matriz/metabolismo , Animais , Artrite/imunologia , Artrite/patologia , Biópsia , Linhagem Celular , Colágeno/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Rim/patologia , Nefrite Lúpica/patologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Metaloproteinase 12 da Matriz/genética , Inibidores de Metaloproteinases de Matriz/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peritonite/induzido quimicamente , Peritonite/imunologia , Peritonite/patologia , Cultura Primária de Células , Proteólise , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Células THP-1 , Tioglicolatos/toxicidade
16.
Mol Syst Biol ; 13(1): 906, 2017 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-28082348

RESUMO

Protein-protein interaction networks (interactomes) define the functionality of all biological systems. In apoptosis, proteolysis by caspases is thought to initiate disassembly of protein complexes and cell death. Here we used a quantitative proteomics approach, protein correlation profiling (PCP), to explore changes in cytoplasmic and mitochondrial interactomes in response to apoptosis initiation as a function of caspase activity. We measured the response to initiation of Fas-mediated apoptosis in 17,991 interactions among 2,779 proteins, comprising the largest dynamic interactome to date. The majority of interactions were unaffected early in apoptosis, but multiple complexes containing known caspase targets were disassembled. Nonetheless, proteome-wide analysis of proteolytic processing by terminal amine isotopic labeling of substrates (TAILS) revealed little correlation between proteolytic and interactome changes. Our findings show that, in apoptosis, significant interactome alterations occur before and independently of caspase activity. Thus, apoptosis initiation includes a tight program of interactome rearrangement, leading to disassembly of relatively few, select complexes. These early interactome alterations occur independently of cleavage of these protein by caspases.


Assuntos
Caspases/metabolismo , Citoplasma/metabolismo , Mitocôndrias/metabolismo , Proteômica/métodos , Receptor fas/metabolismo , Apoptose , Cromatografia Líquida , Humanos , Marcação por Isótopo , Células Jurkat , Espectrometria de Massas , Mapas de Interação de Proteínas , Proteólise
17.
Cell Rep ; 16(6): 1762-1773, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27477282

RESUMO

Deregulated cathepsin proteolysis occurs across numerous cancers, but in vivo substrates mediating tumorigenesis remain ill-defined. Applying 8-plex iTRAQ terminal amine isotopic labeling of substrates (TAILS), a systems-level N-terminome degradomics approach, we identified cathepsin B, H, L, S, and Z in vivo substrates and cleavage sites with the use of six different cathepsin knockout genotypes in the Rip1-Tag2 mouse model of pancreatic neuroendocrine tumorigenesis. Among 1,935 proteins and 1,114 N termini identified by TAILS, stable proteolytic products were identified in wild-type tumors compared with one or more different cathepsin knockouts (17%-44% of 139 cleavages). This suggests a lack of compensation at the substrate level by other cathepsins. The majority of neo-N termini (56%-83%) for all cathepsins was consistent with protein degradation. We validated substrates, including the glycolytic enzyme pyruvate kinase M2 associated with the Warburg effect, the ER chaperone GRP78, and the oncoprotein prothymosin-alpha. Thus, the identification of cathepsin substrates in tumorigenesis improves the understanding of cathepsin functions in normal physiology and cancer.


Assuntos
Catepsinas/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteoma/metabolismo , Animais , Carcinogênese/metabolismo , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/metabolismo , Camundongos Transgênicos , Proteínas Oncogênicas/metabolismo , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Especificidade por Substrato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA