Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 6: 23579, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-27030542

RESUMO

Many neurological injuries are likely too extensive for the limited repair capacity of endogenous neural stem cells (NSCs). An alternative is to isolate NSCs from a donor, and expand them in vitro as transplantation material. Numerous groups have already transplanted neural stem and precursor cells. A caveat to this approach is the undefined phenotypic distribution of the donor cells, which has three principle drawbacks: (1) Stem-like cells retain the capacity to proliferate in vivo. (2) There is little control over the cells' terminal differentiation, e.g., a graft intended to replace neurons might choose a predominantly glial fate. (3) There is limited ability of researchers to alter the combination of cell types in pursuit of a precise treatment. We demonstrate a procedure for differentiating human neural precursor cells (hNPCs) in vitro, followed by isolation of the neuronal progeny. We transplanted undifferentiated hNPCs or a defined concentration of hNPC-derived neurons into mice, then compared these two groups with regard to their survival, proliferation and phenotypic fate. We present evidence suggesting that in vitro-differentiated-and-purified neurons survive as well in vivo as their undifferentiated progenitors, and undergo less proliferation and less astrocytic differentiation. We also describe techniques for optimizing low-temperature cell preservation and portability.


Assuntos
Criopreservação/métodos , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Neurônios/citologia , Neurônios/transplante , Transplante de Células-Tronco , Animais , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Rastreamento de Células/métodos , Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Separação Imunomagnética/métodos , Injeções Intraventriculares , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neurais/fisiologia , Neuroglia/citologia , Neuroglia/fisiologia , Neurônios/fisiologia , Fenótipo , Técnicas Estereotáxicas , Transplante Heterólogo
2.
Cell Rep ; 11(7): 1031-42, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25959821

RESUMO

The coordination of complex tumor processes requires cells to rapidly modify their phenotype and is achieved by direct cell-cell communication through gap junction channels composed of connexins. Previous reports have suggested that gap junctions are tumor suppressive based on connexin 43 (Cx43), but this does not take into account differences in connexin-mediated ion selectivity and intercellular communication rate that drive gap junction diversity. We find that glioblastoma cancer stem cells (CSCs) possess functional gap junctions that can be targeted using clinically relevant compounds to reduce self-renewal and tumor growth. Our analysis reveals that CSCs express Cx46, while Cx43 is predominantly expressed in non-CSCs. During differentiation, Cx46 is reduced, while Cx43 is increased, and targeting Cx46 compromises CSC maintenance. The difference between Cx46 and Cx43 is reflected in elevated cell-cell communication and reduced resting membrane potential in CSCs. Our data demonstrate a pro-tumorigenic role for gap junctions that is dependent on connexin expression.


Assuntos
Neoplasias Encefálicas/patologia , Conexina 43/metabolismo , Conexinas/metabolismo , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Animais , Comunicação Celular/fisiologia , Imunofluorescência , Junções Comunicantes/metabolismo , Glioblastoma/metabolismo , Xenoenxertos , Humanos , Immunoblotting , Potenciais da Membrana/fisiologia , Células-Tronco Neoplásicas/metabolismo , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase
3.
PLoS One ; 10(3): e0120281, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25763840

RESUMO

This study investigates the electrophysiological properties and functional integration of different phenotypes of transplanted human neural precursor cells (hNPCs) in immunodeficient NSG mice. Postnatal day 2 mice received unilateral injections of 100,000 GFP+ hNPCs into the right parietal cortex. Eight weeks after transplantation, 1.21% of transplanted hNPCs survived. In these hNPCs, parvalbumin (PV)-, calretinin (CR)-, somatostatin (SS)-positive inhibitory interneurons and excitatory pyramidal neurons were confirmed electrophysiologically and histologically. All GFP+ hNPCs were immunoreactive with anti-human specific nuclear protein. The proportions of PV-, CR-, and SS-positive cells among GFP+ cells were 35.5%, 15.7%, and 17.1%, respectively; around 15% of GFP+ cells were identified as pyramidal neurons. Those electrophysiologically and histological identified GFP+ hNPCs were shown to fire action potentials with the appropriate firing patterns for different classes of neurons and to display spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs). The amplitude, frequency and kinetic properties of sEPSCs and sIPSCs in different types of hNPCs were comparable to host cells of the same type. In conclusion, GFP+ hNPCs produce neurons that are competent to integrate functionally into host neocortical neuronal networks. This provides promising data on the potential for hNPCs to serve as therapeutic agents in neurological diseases with abnormal neuronal circuitry such as epilepsy.


Assuntos
Neocórtex/citologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/transplante , Animais , Sobrevivência Celular , Feto/citologia , Xenoenxertos , Humanos , Camundongos , Neocórtex/metabolismo , Células-Tronco Neurais/química , Células-Tronco Neurais/metabolismo , Neurônios/química , Neurônios/citologia , Neurônios/metabolismo , Telencéfalo/citologia
4.
J Vis Exp ; (62)2012 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-22565048

RESUMO

Tumor heterogeneity represents a fundamental feature supporting tumor robustness and presents a central obstacle to the development of therapeutic strategies(1). To overcome the issue of tumor heterogeneity, it is essential to develop assays and tools enabling phenotypic, (epi)genetic and functional identification and characterization of tumor subpopulations that drive specific disease pathologies and represent clinically relevant targets. It is now well established that tumors exhibit distinct sub-fractions of cells with different frequencies of cell division, and that the functional criteria of being slow cycling is positively associated with tumor formation ability in several cancers including those of the brain, breast, skin and pancreas as well as leukemia(2-8). The fluorescent dye carboxyfluorescein succinimidyl ester (CFSE) has been used for tracking the division frequency of cells in vitro and in vivo in blood-borne tumors and solid tumors such as glioblastoma(2,7,8). The cell-permeant non-fluorescent pro-drug of CFSE is converted by intracellular esterases into a fluorescent compound, which is retained within cells by covalently binding to proteins through reaction of its succinimidyl moiety with intracellular amine groups to form stable amide bonds(9). The fluorescent dye is equally distributed between daughter cells upon divisions, leading to the halving of the fluorescence intensity with every cell division. This enables tracking of cell cycle frequency up to eight to ten rounds of division(10). CFSE retention capacity was used with brain tumor cells to identify and isolate a slow cycling subpopulation (top 5% dye-retaining cells) demonstrated to be enriched in cancer stem cell activity(2). This protocol describes the technique of staining cells with CFSE and the isolation of individual populations within a culture of human glioblastoma (GBM)-derived cells possessing differing division rates using flow cytometry(2). The technique has served to identify and isolate a brain tumor slow-cycling population of cells by virtue of their ability to retain the CFSE labeling.


Assuntos
Neoplasias Encefálicas/patologia , Citometria de Fluxo/métodos , Fluoresceínas/química , Corantes Fluorescentes/química , Glioblastoma/patologia , Coloração e Rotulagem/métodos , Succinimidas/química , Processos de Crescimento Celular/fisiologia , Humanos , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA