Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Comput Assist Radiol Surg ; 19(4): 757-766, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38386176

RESUMO

PURPOSE: Intracardiac transcatheter interventions allow for reducing trauma and hospitalization stays as compared to standard surgery. In the treatment of mitral regurgitation, the most widely adopted transcatheter approach consists in deploying a clip on the mitral valve leaflets by means of a catheter that is run through veins from a peripheral access to the left atrium. However, precise manipulation of the catheter from outside the body while copying with the path constraints imposed by the vessels remains challenging. METHODS: We proposed a path tracking control framework that provides adequate motion commands to the robotic steerable catheter for autonomous navigation through vascular lumens. The proposed work implements a catheter kinematic model featuring nonholonomic constraints. Relying on the real-time measurements from an electromagnetic sensor and a fiber Bragg grating sensor, a two-level feedback controller was designed to control the catheter. RESULTS: The proposed method was tested in a patient-specific vessel phantom. A median position error between the center line of the vessel and the catheter tip trajectory was found to be below 2 mm, with a maximum error below 3 mm. Statistical testing confirmed that the performance of the proposed method exhibited no significant difference in both free space and the contact region. CONCLUSION: The preliminary in vitro studies presented in this paper showed promising accuracy in navigating the catheter within the vessel. The proposed approach enables autonomous control of a steerable catheter for transcatheter cardiology interventions without the request of calibrating the intuitive parameters or acquiring a training dataset.


Assuntos
Cardiologia , Insuficiência da Valva Mitral , Robótica , Humanos , Catéteres , Valva Mitral
3.
Toxins (Basel) ; 12(5)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32375387

RESUMO

Among gliomas, primary tumors originating from glial cells, glioblastoma (GBM) identified as WHO grade IV glioma, is the most common and aggressive malignant brain tumor. We have previously shown that the Escherichia coli protein toxin cytotoxic necrotizing factor 1 (CNF1) is remarkably effective as an anti-neoplastic agent in a mouse model of glioma, reducing the tumor volume, increasing survival, and maintaining the functional properties of peritumoral neurons. However, being unable to cross the blood-brain barrier (BBB), CNF1 requires injection directly into the brain, which is a very invasive administration route. Thus, to overcome this pitfall, we designed a CNF1 variant characterized by the presence of an N-terminal BBB-crossing tag. The variant was produced and we verified whether its activity was comparable to that of wild-type CNF1 in GBM cells. We investigated the signaling pathways engaged in the cell response to CNF1 variants to provide preliminary data to the subsequent studies in experimental animals. CNF1 may represent a novel avenue for GBM therapy, particularly because, besides blocking tumor growth, it also preserves the healthy surrounding tissue, maintaining its architecture and functionality. This renders CNF1 the most interesting candidate for the treatment of brain tumors, among other potentially effective bacterial toxins.


Assuntos
Antineoplásicos/farmacologia , Toxinas Bacterianas/farmacologia , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Permeabilidade Capilar , Proteínas de Escherichia coli/farmacologia , Glioblastoma/tratamento farmacológico , Animais , Antineoplásicos/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Transdução de Sinais
4.
PLoS One ; 10(10): e0140495, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26457896

RESUMO

Epilepsy, one of the most common conditions affecting the brain, is characterized by neuroplasticity and brain cell energy defects. In this work, we demonstrate the ability of the Escherichia coli protein toxin cytotoxic necrotizing factor 1 (CNF1) to counteract epileptiform phenomena in inbred DBA/2J mice, an animal model displaying genetic background with an high susceptibility to induced- and spontaneous seizures. Via modulation of the Rho GTPases, CNF1 regulates actin dynamics with a consequent increase in spine density and length in pyramidal neurons of rat visual cortex, and influences the mitochondrial homeostasis with remarkable changes in the mitochondrial network architecture. In addition, CNF1 improves cognitive performances and increases ATP brain content in mouse models of Rett syndrome and Alzheimer's disease. The results herein reported show that a single dose of CNF1 induces a remarkable amelioration of the seizure phenotype, with a significant augmentation in neuroplasticity markers and in cortex mitochondrial ATP content. This latter effect is accompanied by a decrease in the expression of mitochondrial fission proteins, suggesting a role of mitochondrial dynamics in the CNF1-induced beneficial effects on this epileptiform phenotype. Our results strongly support the crucial role of brain energy homeostasis in the pathogenesis of certain neurological diseases, and suggest that CNF1 could represent a putative new therapeutic tool for epilepsy.


Assuntos
Toxinas Bacterianas/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Metabolismo Energético/efeitos dos fármacos , Proteínas de Escherichia coli/farmacologia , Convulsões/metabolismo , Convulsões/prevenção & controle , Trifosfato de Adenosina/metabolismo , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Animais , Biomarcadores/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Cognição/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos DBA , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Convulsões/patologia , Convulsões/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA