Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant J ; 84(1): 41-55, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26261067

RESUMO

In angiosperms, double fertilization of the egg and central cell of the megagametophyte leads to the development of the embryo and endosperm, respectively. Control of cell cycle progression in the megagametophyte is essential for successful fertilization and development. Central cell-targeted expression of the D-type cyclin CYCD7;1 (end CYCD7;1) using the imprinted FWA promoter overcomes cycle arrest of the central cell in the Arabidopsis female gametophyte in the unfertilized ovule, leading to multinucleate central cells at high frequency. Unlike FERTILIZATION-INDEPENDENT SEED (fis) mutants, but similar to lethal RETINOBLASTOMA-RELATED (rbr) mutants, no seed coat development is triggered. Unlike the case with loss of rbr, post-fertilization end CYCD7;1 in the endosperm enhances the number of nuclei during syncytial endosperm development and induces the partial abortion of developing seeds, associated with the enhanced size of the surviving seeds. The frequency of lethality was less than the frequency of multinucleate central cells, indicating that these aspects are not causally linked. These larger seeds contain larger embryos composed of more cells of wild-type size, surrounded by a seed coat composed of more cells. Seedlings arising from these larger seeds displayed faster seedling establishment and early growth. Similarly, two different embryo-lethal mutants also conferred enlarged seed size in surviving siblings, consistent with seed size increase being a general response to sibling lethality, although the cellular mechanisms were found to be distinct. Our data suggest that tight control of CYCD activity in the central cell and in the developing endosperm is required for optimal seed formation.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/embriologia , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/fisiologia , Endosperma/embriologia , Endosperma/metabolismo , Óvulo Vegetal/embriologia , Óvulo Vegetal/genética , Sementes/genética , Sementes/metabolismo
2.
Plant Cell Environ ; 36(6): 1228-38, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23278806

RESUMO

The hypothesis that mitogen-activated protein kinase (MAPK) signalling is important in plant defences against metal stress has become accepted in recent years. To test the role of oxidative signal-inducible kinase (OXI1) in metal-induced oxidative signalling, the responses of oxi1 knockout lines to environmentally realistic cadmium (Cd) and copper (Cu) concentrations were compared with those of wild-type plants. A relationship between OXI1 and the activation of lipoxygenases and other initiators of oxylipin production was observed under these stress conditions, suggesting that lipoxygenase-1 may be a downstream component of OXI1 signalling. Metal-specific differences in OXI1 action were observed. For example, OXI1 was required for the up-regulation of antioxidative defences such as catalase in leaves and Fe-superoxide dismutase in roots, following exposure to Cu, processes that may involve the MEKK1-MKK2-WRKY25 cascade. Moreover, the induction of Cu/Zn superoxide dismutases in Cu-exposed leaves was regulated by OXI1 in a manner that involves fluctuations in the expression of miRNA398. These observations contrast markedly with the responses to Cd exposure, which also involves OXI1-independent pathways but rather involves changes in components mediating intracellular communication.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Cádmio/metabolismo , Cobre/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Serina-Treonina Quinases/metabolismo , Arabidopsis/crescimento & desenvolvimento , Catalase/metabolismo , Sequestradores de Radicais Livres/metabolismo , MicroRNAs/metabolismo , Oxirredução , Superóxido Dismutase/metabolismo
3.
J Proteome Res ; 7(6): 2458-70, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18433157

RESUMO

An estimated one-third of all proteins in higher eukaryotes are regulated by phosphorylation by protein kinases (PKs). Although plant genomes encode more than 1000 PKs, the substrates of only a small fraction of these kinases are known. By mass spectrometry of peptides from cytoplasmic- and nuclear-enriched fractions, we determined 303 in vivo phosphorylation sites in Arabidopsis proteins. Among 21 different PKs, 12 were phosphorylated in their activation loops, suggesting that they were in their active state. Immunoblotting and mutational analysis confirmed a tyrosine phosphorylation site in the activation loop of a GSK3/shaggy-like kinase. Analysis of phosphorylation motifs in the substrates suggested links between several of these PKs and many target sites. To perform quantitative phosphorylation analysis, peptide arrays were generated with peptides corresponding to in vivo phosphorylation sites. These peptide chips were used for kinome profiling of subcellular fractions as well as H 2O 2-treated Arabidopsis cells. Different peptide phosphorylation profiles indicated the presence of overlapping but distinct PK activities in cytosolic and nuclear compartments. Among different H 2O 2-induced PK targets, a peptide of the serine/arginine-rich (SR) splicing factor SCL30 was most strongly affected. SRPK4 (SR protein-specific kinase 4) and MAPKs (mitogen-activated PKs) were found to phosphorylate this peptide, as well as full-length SCL30. However, whereas SRPK4 was constitutively active, MAPKs were activated by H 2O 2. These results suggest that SCL30 is targeted by different PKs. Together, our data demonstrate that a combination of mass spectrometry with peptide chip phosphorylation profiling has a great potential to unravel phosphoproteome dynamics and to identify PK substrates.


Assuntos
Proteínas de Arabidopsis/metabolismo , Espectrometria de Massas/métodos , Fosfoproteínas/metabolismo , Análise Serial de Proteínas/métodos , Motivos de Aminoácidos , Sequência de Aminoácidos , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas Argonautas , Células Cultivadas , Quinases Ciclina-Dependentes/química , Quinases Ciclina-Dependentes/metabolismo , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/metabolismo , Quinase 3 da Glicogênio Sintase/química , Quinase 3 da Glicogênio Sintase/metabolismo , Peróxido de Hidrogênio/farmacologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Dados de Sequência Molecular , Proteína Básica da Mielina/química , Proteína Básica da Mielina/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Fosforilases/química , Fosforilases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Proteômica/métodos
4.
Gene ; 293(1-2): 199-204, 2002 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-12137958

RESUMO

Transformation of yeast cells with a maize cDNA ZmPAA, encoding a 20S proteasome alpha-subunit, conferred resistance to nickel, cadmium and cobalt. This resistance is not linked to a modification of the intracellular nickel content, as no accumulation of nickel was measured between yeast cells transformed with a void vector or the ZmPAA cDNA. The abundance of the ZmPAA mRNA was increased in the shoots of maize plants upon nickel treatment. These results suggest that the proteasome might be involved in nickel resistance by scavenging metal oxidized proteins both in plants and yeast.


Assuntos
Cisteína Endopeptidases/genética , Complexos Multienzimáticos/genética , Níquel/farmacologia , Saccharomyces cerevisiae/genética , Zea mays/genética , Sequência de Aminoácidos , Northern Blotting , DNA Complementar/química , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Resistência Microbiana a Medicamentos , Expressão Gênica , Dados de Sequência Molecular , Fenótipo , Complexo de Endopeptidases do Proteassoma , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Transformação Genética , Zea mays/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA