Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dev Neurosci ; 46(1): 22-43, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37231843

RESUMO

In depth study of pediatric gliomas has been hampered due to difficulties in accessing patient tissue and a lack of clinically representative tumor models. Over the last decade, however, profiling of carefully curated cohorts of pediatric tumors has identified genetic drivers that molecularly segregate pediatric gliomas from adult gliomas. This information has inspired the development of a new set of powerful in vitro and in vivo tumor models that can aid in identifying pediatric-specific oncogenic mechanisms and tumor microenvironment interactions. Single-cell analyses of both human tumors and these newly developed models have revealed that pediatric gliomas arise from spatiotemporally discrete neural progenitor populations in which developmental programs have become dysregulated. Pediatric high-grade gliomas also harbor distinct sets of co-segregating genetic and epigenetic alterations, often accompanied by unique features within the tumor microenvironment. The development of these novel tools and data resources has led to insights into the biology and heterogeneity of these tumors, including identification of distinctive sets of driver mutations, developmentally restricted cells of origin, recognizable patterns of tumor progression, characteristic immune environments, and tumor hijacking of normal microenvironmental and neural programs. As concerted efforts have broadened our understanding of these tumors, new therapeutic vulnerabilities have been identified, and for the first time, promising new strategies are being evaluated in the preclinical and clinical settings. Even so, dedicated and sustained collaborative efforts are necessary to refine our knowledge and bring these new strategies into general clinical use. In this review, we will discuss the range of currently available glioma models, the way in which they have each contributed to recent developments in the field, their benefits and drawbacks for addressing specific research questions, and their future utility in advancing biological understanding and treatment of pediatric glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Adulto , Humanos , Criança , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioma/genética , Glioma/patologia , Glioma/terapia , Microambiente Tumoral
2.
Cancer Discov ; 13(7): 1592-1615, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37011011

RESUMO

Pediatric high-grade gliomas (pHGG) are lethal, incurable brain tumors frequently driven by clonal mutations in histone genes. They often harbor a range of additional genetic alterations that correlate with different ages, anatomic locations, and tumor subtypes. We developed models representing 16 pHGG subtypes driven by different combinations of alterations targeted to specific brain regions. Tumors developed with varying latencies and cell lines derived from these models engrafted in syngeneic, immunocompetent mice with high penetrance. Targeted drug screening revealed unexpected selective vulnerabilities-H3.3G34R/PDGFRAC235Y to FGFR inhibition, H3.3K27M/PDGFRAWT to PDGFRA inhibition, and H3.3K27M/PDGFRAWT and H3.3K27M/PPM1DΔC/PIK3CAE545K to combined inhibition of MEK and PIK3CA. Moreover, H3.3K27M tumors with PIK3CA, NF1, and FGFR1 mutations were more invasive and harbored distinct additional phenotypes, such as exophytic spread, cranial nerve invasion, and spinal dissemination. Collectively, these models reveal that different partner alterations produce distinct effects on pHGG cellular composition, latency, invasiveness, and treatment sensitivity. SIGNIFICANCE: Histone-mutant pediatric gliomas are a highly heterogeneous tumor entity. Different histone mutations correlate with different ages of onset, survival outcomes, brain regions, and partner alterations. We have developed models of histone-mutant gliomas that reflect this anatomic and genetic heterogeneity and provide evidence of subtype-specific biology and therapeutic targeting. See related commentary by Lubanszky and Hawkins, p. 1516. This article is highlighted in the In This Issue feature, p. 1501.


Assuntos
Neoplasias Encefálicas , Glioma , Animais , Camundongos , Histonas/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioma/tratamento farmacológico , Glioma/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Encéfalo/patologia , Mutação
3.
Oncogene ; 40(47): 6494-6512, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34611309

RESUMO

Expression of the immediate-early response gene IER2 has been associated with the progression of several types of cancer, but its functional role is poorly understood. We found that increased IER2 expression in human melanoma is associated with shorter overall survival, and subsequently investigated the mechanisms through which IER2 exerts this effect. In experimental melanoma models, sustained expression of IER2 induced senescence in a subset of melanoma cells in a p53/MAPK/AKT-dependent manner. The senescent cells produced a characteristic secretome that included high levels of the extracellular phosphoglycoprotein osteopontin. Nuclear localization of the IER2 protein was critical for both the induction of senescence and osteopontin secretion. Osteopontin secreted by IER2-expressing senescent cells strongly stimulated the migration and invasion of non-senescent melanoma cells. Consistently, we observed coordinate expression of IER2, p53/p21, and osteopontin in primary human melanomas and metastases, highlighting the pathophysiological relevance of IER2-mediated senescence in melanoma progression. Together, our study reveals that sustained IER2 expression drives melanoma invasion and progression through stimulating osteopontin secretion via the stochastic induction of senescence.


Assuntos
Biomarcadores Tumorais/metabolismo , Senescência Celular , Regulação Neoplásica da Expressão Gênica , Proteínas Imediatamente Precoces/metabolismo , Melanoma/patologia , Osteopontina/metabolismo , Transativadores/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Humanos , Proteínas Imediatamente Precoces/genética , Melanoma/genética , Melanoma/metabolismo , Camundongos , Invasividade Neoplásica , Osteopontina/genética , Prognóstico , Transativadores/genética , Células Tumorais Cultivadas
4.
Clin Exp Metastasis ; 37(1): 47-67, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31758288

RESUMO

Platelets are primarily known for their contribution to hemostasis and subsequent wound healing. In addition to these functions, platelets play a role in the process of metastasis. Since the first study that suggested a metastasis-promoting function for platelets was published in 1968, various mechanisms have been proposed to explain how platelets contribute to the metastatic process. These include roles in the intravascular arrest of tumor cells, in tumor cell transendothelial migration, in the degradation of basement membrane barriers, in migration and invasion at the metastatic site, and in the proliferation of disseminated tumor cells. Nevertheless, conflicting observations about the role of platelets in these processes have also been reported. Here, we review the in vivo evidence that supports a role for platelets in metastasis formation, propose several scenarios for the contribution of platelets to tumor cell arrest and transendothelial migration, and discuss the evidence that platelets contribute to metastatic invasion and outgrowth.


Assuntos
Plaquetas/patologia , Metástase Neoplásica/patologia , Neoplasias/irrigação sanguínea , Animais , Adesão Celular , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Humanos , Invasividade Neoplásica/patologia , Neoplasias/patologia , Migração Transendotelial e Transepitelial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA