Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38139828

RESUMO

Cystic fibrosis (CF), the most common autosomal recessive fatal genetic disease in the Caucasian population, is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR), an anion channel that regulates salt and water transport across a variety of secretory epithelia. Deletion of phenylalanine at position 508, F508del, the most common CF-causing mutation, destabilises the CFTR protein, causing folding and trafficking defects that lead to a dramatic reduction in its functional expression. Small molecules called correctors have been developed to rescue processing-defective F508del CFTR. We have combined in silico and in vitro approaches to investigate the mechanism of action and potential as CFTR correctors of three hybrid derivatives (2a, 7a, and 7m) obtained by merging the amino-arylthiazole core with the benzodioxole carboxamide moiety characterising the corrector lumacaftor. Molecular modelling analyses suggested that the three hybrids interact with a putative region located at the MSD1/NBD1 interface. Biochemical analyses confirmed these results, showing that the three molecules affect the expression and stability of the F508del NBD1. Finally, the YFP assay was used to evaluate the influence of the three hybrid derivatives on F508del CFTR function, assessing that their effect is additive to that of the correctors VX661 and VX445. Our study shows that the development and testing of optimised compounds targeting different structural and functional defects of mutant CFTR is the best strategy to provide more effective correctors that could be used alone or in combination as a valuable therapeutic option to treat an even larger cohort of people affected by CF.

2.
J Peripher Nerv Syst ; 28(4): 620-628, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37897416

RESUMO

BACKGROUND AND AIMS: POLR3B gene encodes a subunit of RNA polymerase III (Pol III). Biallelic mutations in POLR3B are associated with leukodystrophies, but recently de novo heterozygous mutations have been described in early onset peripheral demyelinating neuropathies with or without central involvement. Here, we report the first Italian case carrying a de novo variant in POLR3B with a pure neuropathy phenotype and primary axonal involvement of the largest nerve fibers. METHODS: Nerve conduction studies, sympathetic skin response, dynamic sweat test, tactile and thermal quantitative sensory testing and brain magnetic resonance imaging were performed according to standard procedures. Histopathological examination was performed on skin and sural nerve biopsies. Molecular analysis of the proband and his relatives was performed with Next Generation Sequencing. The impact of the identified variant on the overall protein structure was evaluated through rotamers method. RESULTS: Since his early adolescence, the patient presented with signs of polyneuropathy with severe distal weakness, atrophy, and reduced sensation. Neurophysiological studies showed a sensory-motor axonal polyneuropathy, with confirmed small fiber involvement. In addition, skin biopsy and sural nerve biopsy showed predominant large fibers involvement. A trio's whole exome sequencing revealed a novel de novo variant p.(Arg1046Cys) in POLR3B, which was classified as Probably Pathogenic. Molecular modeling data confirmed a deleterious effect of the variant on protein structure. INTERPRETATION: Neurophysiological and morphological findings suggest a primary axonal involvement of the largest nerve fibers in POLR3B-related neuropathies. A partial loss of function mechanism is proposed for both neuropathy and leukodystrophy phenotypes.


Assuntos
Doenças Desmielinizantes , Doenças do Sistema Nervoso Periférico , Polineuropatias , RNA Polimerase III , Adolescente , Humanos , Axônios , Doenças Desmielinizantes/genética , Mutação , Fibras Nervosas/metabolismo , Doenças do Sistema Nervoso Periférico/genética , Polineuropatias/genética , Proteínas/genética , RNA Polimerase III/genética , RNA Polimerase III/metabolismo
3.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36293130

RESUMO

Cystic fibrosis is a hereditary disease mainly caused by the deletion of the Phe 508 (F508del) of the cystic fibrosis transmembrane conductance regulator (CFTR) protein that is thus withheld in the endoplasmic reticulum and rapidly degraded by the ubiquitin/proteasome system. Cystic fibrosis remains a potentially fatal disease, but it has become treatable as a chronic condition due to some CFTR-rescuing drugs that, when used in combination, increase in their therapeutic effect due to a synergic action. Also, dietary supplementation of natural compounds in combination with approved drugs could represent a promising strategy to further alleviate cystic fibrosis symptoms. On these bases, we screened by in silico drug repositioning 846 small synthetic or natural compounds from the AIFA database to evaluate their capacity to interact with the highly druggable lumacaftor binding site of F508del-CFTR. Among the identified hits, nicotinamide (NAM) was predicted to accommodate into the lumacaftor binding region of F508del-CFTR without competing against the drug but rather stabilizing its binding. The effective capacity of NAM to bind F508del-CFTR in a lumacaftor-uncompetitive manner was then validated experimentally by surface plasmon resonance analysis. Finally, the capacity of NAM to synergize with lumacaftor increasing its CFTR-rescuing activity was demonstrated in cell-based assays. This study suggests the possible identification of natural small molecules devoid of side effects and endowed with the capacity to synergize with drugs currently employed for the treatment of cystic fibrosis, which hopefully will increase the therapeutic efficacy with lower doses.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/metabolismo , Reposicionamento de Medicamentos , Complexo de Endopeptidases do Proteassoma/metabolismo , Benzodioxóis/farmacologia , Benzodioxóis/uso terapêutico , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Niacinamida/uso terapêutico , Ubiquitinas/metabolismo , Mutação
4.
Biomolecules ; 12(6)2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35740917

RESUMO

The Biomolecules Special issue on "An Update on CFTR Drug Discovery: Opportunities and Challenges" includes three original research articles and a webinar session focusing on some recent findings concerning CFTR drug discovery [...].


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Descoberta de Drogas , Humanos , Mutação
5.
Cells ; 10(11)2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34831449

RESUMO

Boron Neutron Capture Therapy (BNCT) is a tumor cell-selective radiotherapy based on a nuclear reaction that occurs when the isotope boron-10 (10B) is radiated by low-energy thermal neutrons or epithermal neutrons, triggering a nuclear fission response and enabling a selective administration of irradiation to cells. Hence, we need to create novel delivery agents containing 10B with high tumor selectivity, but also exhibiting low intrinsic toxicity, fast clearance from normal tissue and blood, and no pharmaceutical effects. In the past, boronated monoclonal antibodies have been proposed using large boron-containing molecules or dendrimers, but with no investigations in relation to maintaining antibody specificity and structural and functional features. This work aims at improving the potential of monoclonal antibodies applied to BNCT therapy, identifying in silico the best native residues suitable to be substituted with a boronated one, carefully evaluating the effect of boronation on the 3D structure of the monoclonal antibody and on its binding affinity. A boronated monoclonal antibody was thus generated for specific 10B delivery. In this context, we have developed a case study of Boron Delivery Antibody Identification Pipeline, which has been tested on cetuximab. Cetuximab is an epidermal growth factor receptor (EGFR) inhibitor used in the treatment of metastatic colorectal cancer, metastatic non-small cell lung cancer, and head and neck cancer.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Terapia por Captura de Nêutron de Boro , Boro/administração & dosagem , Ácidos Borônicos/química , Simulação por Computador , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação/genética
6.
Eur J Med Chem ; 213: 113186, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33472120

RESUMO

Computational drug repositioning is of growing interest to academia and industry, for its ability to rapidly screen a huge number of candidates in silico (exploiting comprehensive drug datasets) together with reduced development cost and time. The potential of drug repositioning has not been fully evaluated yet for cystic fibrosis (CF), a disease mainly caused by deletion of Phe 508 (F508del) of the cystic fibrosis transmembrane conductance regulator (CFTR) protein. F508del-CFTR is thus withheld in the endoplasmic reticulum and rapidly degraded by the ubiquitin/proteasome system. CF is still a fatal disease. Nowadays, it is treatable by some CFTR-rescuing drugs, but new-generation drugs with stronger therapeutic benefits and fewer side effects are still awaited. In this manuscript we report about the results of a pilot computational drug repositioning screening in search of F508del-CFTR-targeted drugs performed on AIFA library by means of a dedicated computational pipeline and surface plasmon resonance binding assay to experimentally validate the computational findings.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Fenilalanina/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Conjuntos de Dados como Assunto , Relação Dose-Resposta a Droga , Reposicionamento de Medicamentos , Humanos , Estrutura Molecular , Fenilalanina/metabolismo , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
7.
Pharmaceuticals (Basel) ; 13(12)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291847

RESUMO

Cystic fibrosis (CF) is the autosomal recessive disorder most recurrent in Caucasian populations. To combat this disease, many life-prolonging therapies are required and deeply investigated, including the development of the so-called cystic fibrosis transmembrane conductance regulator (CFTR) modulators, such as correctors and potentiators. Combination therapy with the two series of drugs led to the approval of several multi-drug effective treatments, such as Orkambi, and to the recent promising evaluation of the triple-combination Elexacaftor-Tezacaftor-Ivacaftor. This scenario enlightened the effectiveness of the multi-drug approach to pave the way for the discovery of novel therapeutic agents to contrast CF. The recent X-crystallographic data about the human CFTR in complex with the well-known potentiator Ivacaftor (VX-770) opened the possibility to apply a computational study aimed to explore the key features involved in the potentiator binding. Herein, we discussed molecular docking studies performed onto the chemotypes so far discussed in the literature as CFTR potentiator, reporting the most relevant interactions responsible for their mechanism of action, involving Van der Waals interactions and π-π stacking with F236, Y304, F305 and F312, as well as H-bonding F931, Y304, S308 and R933. This kind of positioning will stabilize the effective potentiator at the CFTR channel. These data have been accompanied by pharmacophore analyses, which promoted the design of novel derivatives endowed with a main (hetero)aromatic core connected to proper substituents, featuring H-bonding moieties. A highly predictive quantitative-structure activity relationship (QSAR) model has been developed, giving a cross-validated r2 (r2cv) = 0.74, a non-cross validated r2 (r2ncv) = 0.90, root mean square error (RMSE) = 0.347, and a test set r2 (r2pred) = 0.86. On the whole, the results are expected to gain useful information to guide the further development and optimization of new CFTR potentiators.

8.
Int J Mol Sci ; 21(21)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33138251

RESUMO

Cystic fibrosis (CF) is the autosomal recessive disorder most recurrent in Caucasian populations. Different mutations involving the cystic fibrosis transmembrane regulator protein (CFTR) gene, which encodes the CFTR channel, are involved in CF. A number of life-prolonging therapies have been conceived and deeply investigated to combat this disease. Among them, the administration of the so-called CFTR modulators, such as correctors and potentiators, have led to quite beneficial effects. Recently, based on QSAR (quantitative structure activity relationship) studies, we reported the rational design and synthesis of compound 2, an aminoarylthiazole-VX-809 hybrid derivative exhibiting promising F508del-CFTR corrector ability. Herein, we explored the docking mode of the prototype VX-809 as well as of the aforementioned correctors in order to derive useful guidelines for the rational design of further analogues. In addition, we refined our previous QSAR analysis taking into account our first series of in-house hybrids. This allowed us to optimize the QSAR model based on the chemical structure and the potency profile of hybrids as F508del-CFTR correctors, identifying novel molecular descriptors explaining the SAR of the dataset. This study is expected to speed up the discovery process of novel potent CFTR modulators.


Assuntos
Aminopiridinas/química , Aminopiridinas/farmacologia , Benzodioxóis/química , Benzodioxóis/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/tratamento farmacológico , Simulação de Acoplamento Molecular , Mutação , Relação Quantitativa Estrutura-Atividade , Fibrose Cística/genética , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/química , Humanos
9.
Cells ; 9(4)2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326241

RESUMO

The rare autosomal dominant Charcot-Marie-Tooth type 2B (CMT2B) is associated with mutations in the RAB7A gene, involved in the late endocytic pathway. CMT2B is characterized by predominant sensory loss, ulceromutilating features, with lesser-to-absent motor deficits. We characterized clinically and genetically a family harboring a novel pathogenic RAB7A variant and performed structural and functional analysis of the mutant protein. A 39-year-old woman presented with early-onset walking difficulties, progressive distal muscle wasting and weakness in lower limbs and only mild sensory signs. Electrophysiology demonstrated an axonal sensorimotor neuropathy. Nerve biopsy showed a chronic axonal neuropathy with moderate loss of all caliber myelinated fibers. Next-generation sequencing (NGS) technology revealed in the proband and in her similarly affected father the novel c.377A>G (p.K126R) heterozygous variant predicted to be deleterious. The mutation affects the biochemical properties of RAB7 GTPase, causes altered interaction with peripherin, and inhibition of neurite outgrowth, as for previously reported CMT2B mutants. However, it also shows differences, particularly in the epidermal growth factor receptor degradation process. Altogether, our findings indicate that this RAB7A variant is pathogenic and widens the phenotypic spectrum of CMT2B to include predominantly motor CMT2. Alteration of the receptor degradation process might explain the different clinical presentations in this family.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Laminopatias/genética , Mutação/genética , Proteólise , Proteínas rab de Ligação ao GTP/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adolescente , Adulto , Animais , Sequência de Bases , Biópsia , Linhagem Celular , Receptores ErbB/genética , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Ligantes , Masculino , Camundongos , Pessoa de Meia-Idade , Proteínas Mutantes/metabolismo , Crescimento Neuronal , Linhagem , Periferinas/metabolismo , Fenótipo , Ligação Proteica , Pele/patologia , Proteínas rab de Ligação ao GTP/química , proteínas de unión al GTP Rab7
10.
Int J Mol Sci ; 21(7)2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244346

RESUMO

Cystic fibrosis transmembrane conductance regulator (CFTR)-rescuing drugs have already transformed cystic fibrosis (CF) from a fatal disease to a treatable chronic condition. However, new-generation drugs able to bind CFTR with higher specificity/affinity and to exert stronger therapeutic benefits and fewer side effects are still awaited. Computational methods and biosensors have become indispensable tools in the process of drug discovery for many important human pathologies. Instead, they have been used only piecemeal in CF so far, calling for their appropriate integration with well-tried CF biochemical and cell-based models to speed up the discovery of new CFTR-rescuing drugs. This review will give an overview of the available structures and computational models of CFTR and of the biosensors, biochemical and cell-based assays already used in CF-oriented studies. It will also give the reader some insights about how to integrate these tools as to improve the efficiency of the drug discovery process targeted to CFTR.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Descoberta de Drogas/métodos , Técnicas Biossensoriais , Biologia Computacional , Fibrose Cística/tratamento farmacológico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Modelos Moleculares , Conformação Proteica
11.
J Neurol Sci ; 398: 75-78, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30685713

RESUMO

Variants in Filamin C (FLNC) gene may cause either cardiomyopathies or different myopathies. We describe a family affected by a distal myopathy with autosomal dominant inheritance. The onset of the disease was in the third decade with gait impairment due to distal leg weakness. Subsequently, the disease progressed with an involvement of proximal lower limbs and hand muscles. Muscle biopsy, performed in one subject,identified relevant myofibrillar abnormalities. We performed a target gene panel testing for myofibrillar myopathies by NGS approach which identified a novel mutation in exon 3 of FLNC gene (c.A664G:p.M222V), within the N-terminal actin-binding (ABD) domain. This variant has been identified in all affected members of the family, thus supporting its pathogenic role. Differently from previously identified variants, our family showed a predominant leg involvement and myofibrillar aggregates, thus further expanding the spectrum of Filamin C related myopathies.


Assuntos
Actinas/genética , Miopatias Distais/genética , Filaminas/genética , Mutação/genética , Miopatias Congênitas Estruturais/genética , Actinas/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/fisiologia , Miopatias Distais/diagnóstico , Miopatias Distais/metabolismo , Filaminas/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Miopatias Congênitas Estruturais/diagnóstico , Miopatias Congênitas Estruturais/metabolismo , Linhagem
12.
Molecules ; 23(1)2018 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-29316712

RESUMO

Cystic fibrosis (CF) is mainly caused by the deletion of Phe 508 (ΔF508) in the cystic fibrosis transmembrane conductance regulator (CFTR) protein that is thus withheld in the endoplasmic reticulum and rapidly degraded by the ubiquitin/proteasome system. New drugs able to rescue ΔF508-CFTR trafficking are eagerly awaited. An integrated bioinformatics and surface plasmon resonance (SPR) approach was here applied to investigate the rescue mechanism(s) of a series of CFTR-ligands including VX809, VX770 and some aminoarylthiazole derivatives (AAT). Computational studies tentatively identified a large binding pocket in the ΔF508-CFTR nucleotide binding domain-1 (NBD1) and predicted all the tested compounds to bind to three sub-regions of this main pocket. Noticeably, the known CFTR chaperone keratin-8 (K8) seems to interact with some residues located in one of these sub-pockets, potentially interfering with the binding of some ligands. SPR results corroborated all these computational findings. Moreover, for all the considered ligands, a statistically significant correlation was determined between their binding capability to ΔF508-NBD1 measured by SPR and the pockets availability measured by computational studies. Taken together, these results demonstrate a strong agreement between the in silico prediction and the SPR-generated binding data, suggesting a path to speed up the identification of new drugs for the treatment of cystic fibrosis.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/química , Tiazóis/química , Sítios de Ligação , Biologia Computacional , Fibrose Cística/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Ressonância de Plasmônio de Superfície
13.
Eur J Med Chem ; 144: 179-200, 2018 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-29272749

RESUMO

The most common CF mutation, F508del, impairs the processing and gating of CFTR protein. This deletion results in the improper folding of the protein and its degradation before it reaches the plasma membrane of epithelial cells. Present correctors, like VX809 only induce a partial rescue of the mutant protein. Our previous studies reported a class of compounds, called aminoarylthiazoles (AATs), featuring an interesting activity as correctors. Some of them show additive effect with VX809 indicating a different mechanism of action. In an attempt to construct more interesting molecules, it was thought to generate chemically hybrid compounds, blending a portion of VX809 merged to the thiazole scaffold. This approach was guided by the development of QSAR analyses, which were performed based on the F508del correctors so far disclosed in the literature. This strategy was aimed at exploring the key requirements turning in the corrector ability of the collected derivatives and allowed us to derive a predictive model guiding for the synthesis of novel hybrids as promising correctors. The new molecules were tested in functional and biochemical assays on bronchial CFBE41o-cells expressing F508del-CFTR showing a promising corrector activity.


Assuntos
Aminopiridinas/química , Aminopiridinas/farmacologia , Benzodioxóis/química , Benzodioxóis/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Mutação/efeitos dos fármacos , Tiazóis/química , Tiazóis/farmacologia , Aminopiridinas/síntese química , Benzodioxóis/síntese química , Linhagem Celular , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Humanos , Relação Quantitativa Estrutura-Atividade , Tiazóis/síntese química
14.
J Pharm Biomed Anal ; 149: 335-342, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29132113

RESUMO

Phosphodiesterases (PDEs) regulate the intracellular levels of cAMP and cGMP. The great clinical success of the PDE5 inhibitors, Sildenafil (Viagra), Vardenafil (Levitra) and Tadalafil (Cialis) has led to an increasing interest for this class of enzymes. Recent studies have shown a correlation between tumor growth and PDE5 overexpression, making PDE5-selective inhibitors promising candidates for cancer treatment. The search for such inhibitors rests today on radioactive assays. In this work, we exploit the conserved catalytic domain of the enzyme and propose a faster and safer method for detecting the binding of ligands and evaluate their affinities. The new approach takes advantage of Förster Resonance Energy Transfer (FRET) between, as the donor, a fluorescein-like diarsenical probe able to covalently bind a tetracysteine motif fused to the recombinant PDE5 catalytic domain and, as the acceptor, a rhodamine probe covalently bound to the pseudosubstrate cGMPS. The FRET efficiency decreases when a competitive ligand binds the PDE5 catalytic site and displaces the cGMPS-rhodamine conjugate. We have structurally investigated the PDE5/cGMPS-rhodamine complex by molecular modelling and have used the FRET signal to quantitatively characterize its binding equilibrium. Competitive displacement experiments were carried out with tadalafil and cGMPS. An adaptation of the competitive-displacement equilibrium model yielded the affinities for PDE5 of the incoming ligands, nano- and micromolar, respectively.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Inibidores da Fosfodiesterase 5/farmacologia , Domínio Catalítico , Química Farmacêutica/métodos , GMP Cíclico/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/química , Corantes Fluorescentes/química , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Ligantes , Modelos Químicos , Simulação de Acoplamento Molecular , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Rodaminas/química , Tadalafila/farmacologia
15.
ChemMedChem ; 12(22): 1893-1905, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-28940806

RESUMO

A new series of spirocyclic σ receptor (σR) ligands were prepared and studied. Most were found to have a high affinity and selectivity for σ1 R; three compounds were shown to be σ1 R agonists, while another proved to be the only σ1 R antagonist. Only one of the σ1 R agonists (BS148) also exhibited σ2 R selectivity and was able to inhibit the growth of metastatic malignant melanoma cell lines without affecting normal human melanocytes. The antiproliferative activity of this compound suggested an σ2 R agonist profile. Further, preliminary investigations indicated that the mechanism of metastatic malignant melanoma cell death induced by BS148 is due, at least in part, to apoptosis.


Assuntos
Analgésicos Opioides/farmacologia , Antineoplásicos/farmacologia , Melanoma/tratamento farmacológico , Piperidinas/farmacologia , Receptores sigma/agonistas , Compostos de Espiro/farmacologia , Analgésicos Opioides/síntese química , Analgésicos Opioides/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Masculino , Melanoma/patologia , Camundongos , Modelos Moleculares , Estrutura Molecular , Piperidinas/síntese química , Piperidinas/química , Compostos de Espiro/síntese química , Compostos de Espiro/química , Relação Estrutura-Atividade
16.
J Enzyme Inhib Med Chem ; 32(1): 214-230, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28114832

RESUMO

The 5-hydroxytryptamine (5-HT1A) receptors represent an attractive target in drug discovery. In particular, 5-HT1A agonists and partial agonists are deeply investigated for their potential role in the treatment of anxiety, depression, ischaemic brain disorder and more recently, of pain. On the other hand, 5-HT1A antagonists have been revealed promising compounds in cognition disorders and, lately, in cancer. Thus, the discovery of 5HT1A ligands is nowadays an appealing research activity in medicinal chemistry. In this work, Comparative Molecular Fields Analysis (CoMFA) and Comparative Molecular Similarity Index Analysis (CoMSIA) were applied on an in-house library of 5-HT1A ligands bearing different chemical scaffolds in order to elucidate their affinity and selectivity for the target. Following this procedure, a number of structural modifications have been drawn for the development of much more effective 5-HT1AR ligands. [Formula: see text].


Assuntos
Receptor 5-HT1A de Serotonina/metabolismo , Antagonistas do Receptor 5-HT1 de Serotonina/química , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia , Relação Dose-Resposta a Droga , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade , Relação Estrutura-Atividade
17.
Bioorg Med Chem Lett ; 27(1): 24-29, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27890378

RESUMO

Phosphodiesterase 4 (PDE4) inhibitors have attractive therapeutic potential in respiratory, inflammatory, metabolic and CNS disorders. The present work details the design, chemical exploration and biological profile of a novel PDE4 inhibitor chemotype. A diazepinone ring was identified as an under-represented heterocyclic system fulfilling a set of PDE4 structure-based design hypotheses. Rapid exploration of the structure activity relationships for the series was enabled by robust and scalable two/three-steps parallel chemistry protocols. The resulting compounds demonstrated PDE4 inhibitory activity in cell free and cell-based assays comparable to the Zardaverine control used, suggesting potential avenues for their further development.


Assuntos
Azepinas/farmacologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Desenho de Fármacos , Inibidores da Fosfodiesterase 4/farmacologia , Azepinas/síntese química , Azepinas/química , Relação Dose-Resposta a Droga , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Estrutura Molecular , Inibidores da Fosfodiesterase 4/síntese química , Inibidores da Fosfodiesterase 4/química , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/biossíntese
18.
J Med Chem ; 59(21): 9825-9836, 2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27731647

RESUMO

The trace amine-associated receptor 1 (TAAR1) is a G-protein-coupled receptors (GPCR) potently activated by a variety of molecules besides trace amines (TAs), including thyroid hormone-derivatives like 3-iodothyronamine (T1AM), catechol-O-methyltransferase products like 3-methoxytyramine, and amphetamine-related compounds. Accordingly, TAAR1 is considered a promising target for medicinal development. To gain more insights into TAAR1 physiological functions and validation of its therapeutic potential, we recently developed a new class of thyronamine-like derivatives. Among them compound SG2 showed high affinity and potent agonist activity at mouse TAAR1. In the present work, we describe design, synthesis, and SAR study of a new series of compounds (1-16) obtained by introducing specific structural changes at key points of our lead compound SG2 skeleton. Five of the newly synthesized compounds displayed mTAAR1 agonist activity higher than both SG2 and T1AM. Selected diphenylmethane analogues, namely 1 and 2, showed potent functional activity in in vitro and in vivo models.


Assuntos
Compostos Benzidrílicos/farmacologia , Desenho de Fármacos , Receptores Acoplados a Proteínas G/agonistas , Animais , Compostos Benzidrílicos/síntese química , Compostos Benzidrílicos/química , Células Cultivadas , Relação Dose-Resposta a Droga , Células HEK293 , Células Hep G2 , Humanos , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
19.
Eur J Med Chem ; 124: 82-102, 2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27560284

RESUMO

Phosphodiesterase type 4D (PDE4D) has been indicated as a promising target for treating neurodegenerative pathologies such as Alzheimer's Disease (AD). By preventing cAMP hydrolysis, PDE4 inhibitors (PDE4Is) increase the cAMP response element-binding protein (CREB) phosphorylation, synaptic plasticity and long-term memory formation. Pharmacological and behavioral studies on our hit GEBR-7b demonstrated that selective PDE4DIs could improve memory without causing emesis and sedation. The hit development led to new molecule series, herein reported, characterized by a catechol structure bonded to five member heterocycles. Molecular modeling studies highlighted the pivotal role of a polar alkyl chain in conferring selective enzyme interaction. Compound 8a showed PDE4D3 selective inhibition and was able to increase intracellular cAMP levels in neuronal cells, as well as in the hippocampus of freely moving rats. Furthermore, 8a was able to readily cross the blood-brain barrier and enhanced memory performance in mice without causing any emetic-like behavior. These data support the view that PDE4D is an adequate molecular target to restore memory deficits in different neuropathologies, including AD, and also indicate compound 8a as a promising candidate for further preclinical development.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Iminas/química , Iminas/farmacologia , Memória/efeitos dos fármacos , Morfolinas/química , Morfolinas/farmacologia , Inibidores da Fosfodiesterase 4/química , Inibidores da Fosfodiesterase 4/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Domínio Catalítico , Linhagem Celular Tumoral , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/química , Humanos , Iminas/farmacocinética , Iminas/toxicidade , Masculino , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Morfolinas/farmacocinética , Morfolinas/toxicidade , Inibidores da Fosfodiesterase 4/farmacocinética , Inibidores da Fosfodiesterase 4/toxicidade , Ratos , Ratos Sprague-Dawley , Escopolamina/farmacologia
20.
J Clin Lipidol ; 9(6): 837-846, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26687706

RESUMO

BACKGROUND: We describe a kindred with high-density lipoprotein (HDL) deficiency due to APOA1 gene mutation in which comorbidities affected the phenotypic expression of the disorder. METHODS: An overweight boy with hypertriglyceridemia (HTG) and HDL deficiency (HDL cholesterol 0.39 mmol/L, apoA-I 40 mg/dL) was investigated. We sequenced the candidate genes for HTG (LPL, APOC2, APOA5, GPIHBP1, LMF1) and HDL deficiency (LCAT, ABCA1 and APOA1), analyzed HDL subpopulations, measured cholesterol efflux capacity (CEC) of sera and constructed a model of the mutant apoA-I. RESULTS: No mutations in HTG-related genes, ABCA1 and LCAT were found. APOA1 sequence showed that the proband, his mother and maternal grandfather were heterozygous of a novel frameshift mutation (c.546_547delGC), which generated a truncated protein (p.[L159Afs*20]) containing 177 amino acids with an abnormal C-terminal tail of 19 amino acids. Trace amounts of this protein were detectable in plasma. Mutation carriers had reduced levels of LpA-I, preß-HDL and large HDL and no detectable HDL-2 in their plasma; their sera had a reduced CEC specifically the ABCA1-mediated CEC. Metabolic syndrome in the proband explains the extremely low HDL cholesterol level (0.31 mmol/L), which was half of that found in the other carriers. The proband's mother and grandfather, both presenting low plasma low-density lipoprotein cholesterol, were carriers of the ß-thalassemic trait, a condition known to be associated with a reduced low-density lipoprotein cholesterol and a reduced prevalence of cardiovascular disease. This trait might have delayed the development of atherosclerosis related to HDL deficiency. CONCLUSIONS: In these heterozygotes for apoA-I truncation, the metabolic syndrome has deleterious effect on HDL system, whereas ß-thalassemia trait may delay the onset of cardiovascular disease.


Assuntos
Apolipoproteínas A/genética , Mutação da Fase de Leitura , Hipoalfalipoproteinemias/genética , Fenótipo , Adolescente , Idoso , Idoso de 80 Anos ou mais , Apolipoproteínas A/sangue , Transporte Biológico , Colesterol/sangue , Colesterol/metabolismo , Feminino , Humanos , Hipoalfalipoproteinemias/sangue , Hipoalfalipoproteinemias/metabolismo , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Linhagem , Triglicerídeos/sangue , Triglicerídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA