Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
ACS Pharmacol Transl Sci ; 7(6): 1864-1873, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38898951

RESUMO

Design strategies that lead to a more focused in vivo delivery of functionalized nanoparticles (NPs) and their cargo can potentially maximize their therapeutic efficiency while reducing systemic effects, broadening their clinical applications. Here, we report the development of a noncovalent labeling approach where immunoglobulin G (IgG)-decorated NPs can be directed to a cancer cell using a simple, linear bispecific protein adaptor, termed MFE23-ZZ. MFE23-ZZ was created by fusing a single-chain fragment variable domain, termed MFE23, recognizing carcinoembryonic antigen (CEA) expressed on tumor cells, to a small protein ZZ module, which binds to the Fc fragment of IgG. As a proof of concept, monoclonal antibodies (mAbs) were generated against a NP coat protein, namely, gas vesicle protein A (GvpA) of Halobacterium salinarum gas vesicles (GVs). The surface of each GV was therapeutically derivatized with the photoreactive agent chlorin e6 (Ce6GVs) and anti-GvpA mAbs were subsequently bound to GvpA on the surface of each Ce6GV. The bispecific ligand MFE23-ZZ was then bound to mAb-decorated Ce6GVs via their Fc domain, resulting in a noncovalent tripartite complex, namely, MFE23.ZZ-2B10-Ce6GV. This complex enhanced the intracellular uptake of Ce6GVs into human CEA-expressing murine MC38 colon carcinoma cells (MC38.CEA) relative to the CEA-negative parental cell line MC38 in vitro, making them more sensitive to light-induced cell killing. These results suggest that the surface of NP can be rapidly and noncovalently functionalized to target tumor-associated antigen-expressing tumor cells using simple bispecific linkers and any IgG-labeled cargo. This noncovalent approach is readily applicable to other types of functionalized NPs.

2.
Ultrasound Med Biol ; 50(4): 457-466, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38238200

RESUMO

OBJECTIVE: High-frequency, high-resolution transrectal micro-ultrasound (micro-US: ≥15 MHz) imaging of the prostate is emerging as a beneficial tool for scoring disease risk and accurately targeting biopsies. Adding photoacoustic (PA) imaging to visualize abnormal vascularization and accumulation of contrast agents in tumors has potential for guiding focal therapies. In this work, we describe a new imaging platform that combines a transrectal micro-US system with transurethral light delivery for PA imaging. METHODS: A clinical transrectal micro-US system was adapted to acquire PA images synchronous to a tunable laser pulse. A transurethral side-firing optical fiber was developed for light delivery. A polyvinyl chloride (PVC)-plastisol phantom was developed and characterized to image PA contrast agents in wall-less channels. After resolution measurement in water, PA imaging was demonstrated in phantom channels with dyes and biodegradable nanoparticle contrast agents called porphysomes. In vivo imaging of a tumor model was performed, with porphysomes administered intravenously. RESULTS: Photoacoustic imaging data were acquired at 5 Hz, and image reconstruction was performed offline. PA image resolution at a 14-mm depth was 74 and 261 µm in the axial and lateral directions, respectively. The speed of sound in PVC-plastisol was 1383 m/s, and the attenuation was 4 dB/mm at 20 MHz. PA signal from porphysomes was spectrally unmixed from blood signals in the tumor, and a signal increase was observed 3 h after porphysome injection. CONCLUSION: A combined transrectal micro-US and PA imaging system was developed and characterized, and in vivo imaging demonstrated. High-resolution PA imaging may provide valuable additional information for diagnostic and therapeutic applications in the prostate.


Assuntos
Neoplasias , Técnicas Fotoacústicas , Masculino , Humanos , Próstata/diagnóstico por imagem , Meios de Contraste , Ultrassonografia/métodos , Imagens de Fantasmas , Técnicas Fotoacústicas/métodos
3.
Artigo em Inglês | MEDLINE | ID: mdl-37713228

RESUMO

Superharmonic contrast imaging (SpHI) suppresses tissue clutter and allows high-contrast visualization of the vasculature. An array-based dual-frequency (DF) probe has been developed for SpHI, integrating a 21-MHz, 256-element microultrasound imaging array with a 2-MHz, 32-element array to take advantage of the broadband nonlinear responses from microbubble (MB) contrast agents. In this work, ultrafast imaging with plane waves was implemented for SpHI to increase the acquisition frame rate. Ultrafast imaging was also implemented for microultrasound B-mode imaging (HFPW B-mode) to enable high-resolution visualization of the tissue structure. Coherent compounding was demonstrated in vitro and in vivo in both imaging modes. Acquisition frame rates of 4.5 kHz and 187 Hz in HFPW B-mode imaging were achieved for imaging up to 21 mm with one and 25 angles, respectively, and 3.5 kHz and 396 Hz in the SpHI mode with one and nine coherently compounded angles, respectively. SpHI images showed suppression of tissue clutter prior to and after the introduction of MBs in vitro and in vivo. The nine-angle coherently compounded 2-D SpHI images of contrast-filled flow channel showed a contrast-to-tissue ratio (CTR) of 26.0 dB, a 2.5-dB improvement relative to images reconstructed from 0° steering. Consistent with in vitro imaging, the nine-angle compounded 2-D SpHI of a Lewis lung cancer tumor showed a 2.6-dB improvement in contrast enhancement, relative to 0° steering, and additionally revealed a region of nonviable tissue. The 3-D display of the volumetric SpHI data acquired from a xenograft mouse tumor using both 0° steering and nine-angle compounding allowed the visualization of the tumor vasculature. A small vessel visible in the compounded SpHI image, measuring around [Formula: see text], is not visualized in the 0° steering SpHI image, demonstrating the superiority of the latter in detecting fine structures within the tumor.


Assuntos
Neoplasias , Animais , Camundongos , Imagens de Fantasmas , Ultrassonografia/métodos
4.
Artigo em Inglês | MEDLINE | ID: mdl-38125957

RESUMO

Ultrasound molecular imaging (USMI) is a technique used to noninvasively estimate the distribution of molecular markers in vivo by imaging microbubble contrast agents (MCAs) that have been modified to target receptors of interest on the vascular endothelium. USMI is especially relevant for preclinical and clinical cancer research and has been used to predict tumor malignancy and response to treatment. In the last decade, methods that improve the resolution of contrast-enhanced ultrasound by an order of magnitude and allow researchers to noninvasively image individual capillaries have emerged. However, these approaches do not translate directly to molecular imaging. In this work, we demonstrate super-resolution visualization of biomarker expression in vivo using superharmonic ultrasound imaging (SpHI) with dual-frequency transducers, targeted contrast agents, and localization microscopy processing. We validate and optimize the proposed method in vitro using concurrent optical and ultrasound microscopy and a microvessel phantom. With the same technique, we perform a proof-of-concept experiment in vivo in a rat fibrosarcoma model and create maps of biomarker expression co-registered with images of microvasculature. From these images, we measure a resolution of 23 µm, a nearly fivefold improvement in resolution compared to previous diffraction-limited molecular imaging studies.

5.
J Dermatol Sci ; 102(3): 167-176, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34083108

RESUMO

BACKGROUND: Ultra high-frequency ultrasound (uHFUS) is a recently developed diagnostic technology. Despite its potential usefulness, no study has assessed its advantage in diagnosis and evaluation of hair disorders in comparison with other diagnostic methods. OBJECTIVES: To assess the practicability of uHFUS in diagnosing hair disorders and propose a diagnostic methodology. METHODS: Ultrasonographic images of scalp and forehead from patients with hair disorders (n = 103) and healthy controls (n = 40) were obtained by uHFUS and analyzed by both descriptive and numerical parameters. Furthermore, the data were compared with trichoscopic and histopathological findings. RESULTS: The pattern of inflammation and fibrosis, hair cycle abnormality, and the findings in subcutis were detected by uHFUS. Significant differences were noted in the numerical parameters associated with the number of hair shafts and follicles, hair diameters and their diversity, and dermal echogenicity in both cicatricial and non-cicatricial hair disorders. Findings in uHFUS were associated with those observed in trichoscopy and scalp biopsy but uHFUS was able to detect pathological findings associated with hair cycle, inflammation, fibrosis, and subcutaneous abnormalities, which are hardly assessable by trichoscopy. CONCLUSION: The findings of this study highlighted usefulness of uHFUS in diagnosing hair disorders, while overcoming the weaknesses and limitations of other diagnostic tools.


Assuntos
Doenças do Cabelo/diagnóstico , Cabelo/diagnóstico por imagem , Adulto , Idoso , Biópsia/estatística & dados numéricos , Estudos de Casos e Controles , Dermoscopia/estatística & dados numéricos , Feminino , Testa , Cabelo/patologia , Doenças do Cabelo/patologia , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Couro Cabeludo , Transdutores , Ultrassonografia/instrumentação , Ultrassonografia/métodos , Ultrassonografia/estatística & dados numéricos
6.
Artigo em Inglês | MEDLINE | ID: mdl-33872146

RESUMO

Acoustic angiography is a superharmonic contrast-enhanced ultrasound imaging method that produces high-resolution, 3-D maps of the microvasculature. Previous acoustic angiography studies have used twoelement, annular,mechanicallyactuated transducers(called "wobblers") to image microvasculature in preclinical tumor models with high contrast-to-tissue ratio and resolution, but these earlywobbler transducerscould not achieve the depth and sensitivity required for clinical acoustic angiography. In this work, we present a system for performing acoustic angiography with a novel dual-frequency(DF) transducer-a coaxially stacked DF array (DFA). We evaluate the DFA system bothin vitro andin vivo and demonstrate improvements in sensitivity and imaging depth up to 13.1 dB and 10 mm, respectively, compared with previous wobbler probes.


Assuntos
Angiografia , Meios de Contraste , Acústica , Transdutores , Ultrassonografia
7.
Artigo em Inglês | MEDLINE | ID: mdl-33729934

RESUMO

Superharmonic imaging with dual-frequency imaging systems uses conventional low-frequency ultrasound transducers on transmit, and high-frequency transducers on receive to detect higher order harmonic signals from microbubble contrast agents, enabling high-contrast imaging while suppressing clutter from background tissues. Current dual-frequency imaging systems for superharmonic imaging have been used for visualizing tumor microvasculature, with single-element transducers for each of the low- and high-frequency components. However, the useful field of view is limited by the fixed focus of single-element transducers, while image frame rates are limited by the mechanical translation of the transducers. In this article, we introduce an array-based dual-frequency transducer, with low-frequency and high-frequency arrays integrated within the probe head, to overcome the limitations of single-channel dual-frequency probes. The purpose of this study is to evaluate the line-by-line high-frequency imaging and superharmonic imaging capabilities of the array-based dual-frequency probe for acoustic angiography applications in vitro and in vivo. We report center frequencies of 1.86 MHz and 20.3 MHz with -6 dB bandwidths of 1.2 MHz (1.2-2.4 MHz) and 14.5 MHz (13.3-27.8 MHz) for the low- and high-frequency arrays, respectively. With the proposed beamforming schemes, excitation pressure was found to range from 336 to 458 kPa at its azimuthal foci. This was sufficient to induce nonlinear scattering from microbubble contrast agents. Specifically, in vitro contrast channel phantom imaging and in vivo xenograft mouse tumor imaging by this probe with superharmonic imaging showed contrast-to-tissue ratio improvements of 17.7 and 16.2 dB, respectively, compared to line-by-line micro-ultrasound B-mode imaging.


Assuntos
Angiografia , Meios de Contraste , Animais , Camundongos , Microbolhas , Imagens de Fantasmas , Transdutores , Ultrassonografia
8.
Ultrasound Med Biol ; 46(2): 359-368, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31708270

RESUMO

Gas vesicles (GVs) are nanosized structures (45-800 nm) and have been reported to produce non-linear contrast signals, making them an attractive agent for molecular targeting of tumors. One barrier to their use for pre-clinical oncology studies is rapid uptake into the reticuloendothelial system (RES) and consequent rapid decrease in contrast signal after infusion ends and low signal on reperfusion after a bubble burst sequence. The purpose of this study was to examine suppression of the RES and surface modification of GVs to prolong contrast circulation in tumors for ultrasound imaging. Ultrasound imaging to measure dynamics of contrast signal intensity in tumor models was carried out using a 21-MHz high-frequency array transducer with the Vevo 2100 ultrasound system. The non-linear contrast signal from intravenously injected GVs compared with peak enhancement was measured during contrast wash-out and on reperfusion after a contrast burst sequence. Disrupting the RES by saturating the macrophage population or chemically inhibiting the Kupffer cell population with gadolinium or Intralipid preserves 62%-88% of GVs' contrast enhancement relative to peak during the wash-out phase and 32%-56% on reperfusion compared with 38% and 14%, respectively, for no disruption of the RES, indicating longer circulation of GVs in the tumor. Additionally, coating the GVs with 2-, 5- or 10-kDa polyethylene glycol (PEG) chains resulted in >70% contrast signal retention in the tumors during wash-out and, for 5- or 10-kDa PEG chains, a return to >45% of peak contrast signal on reperfusion. These findings indicate that GVs can be used as a contrast agent for tumor imaging and that disruption of the RES improved recirculation and maintained contrast enhancement caused by GVs in the tumors.


Assuntos
Meios de Contraste/administração & dosagem , Meios de Contraste/farmacocinética , Gases , Microbolhas , Sistema Fagocitário Mononuclear/metabolismo , Neoplasias/diagnóstico por imagem , Linhagem Celular Tumoral , Humanos , Neoplasias/patologia , Polietilenoglicóis , Ultrassonografia/métodos
9.
Mol Imaging Biol ; 22(2): 324-334, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31286352

RESUMO

PURPOSE: Blood-brain barrier disruption (BBBD) is of interest for treating neurodegenerative diseases and tumors by enhancing drug delivery. Focused ultrasound (FUS) is a powerful method to alleviate BBB challenges; however, the detection of BBB opening by non-invasive methods remains limited. The purpose of this work is to demonstrate that 3D transcranial color Doppler (3DCD) and photoacoustic imaging (PAI) combined with custom-made nanoparticle (NP)-mediated FUS delivery can detect BBBD in mice. PROCEDURES: We use MRI and stereotactic ultrasound-mediated BBBD to create and confirm four openings in the left hemisphere and inject intravenously indocyanine green (ICG) and three sizes (40 nm, 100 nm, and 240 nm in diameter) of fluorophore-labeled NPs. We use PAI and fluorescent imaging (FI) to assess the spatial distribution of ICG/NPs in tissues. RESULTS: A reversible 41 ± 12 % (n = 8) decrease in diameter of the left posterior cerebral artery (PCA) relative to the right after FUS treatment is found using CD images. The spectral unmixing of photoacoustic images of the in vivo (2 h post FUS), perfused, and ex vivo brain reveals a consistent distribution pattern of ICG and NPs at *FUS locations. Ex vivo spectrally unmixed photoacoustic images show that the opening width is, on average, 1.18 ± 0.12 mm and spread laterally 0.49 ± 0.05 mm which correlated well with the BBB opening locations on MR images. In vivo PAI confirms a deposit of NPs in tissues for hours and potentially days, is less sensitive to NPs of lower absorbance at a depth greater than 3 mm and too noisy with NPs above an absorbance of 85.4. FI correlates well with ex vivo PAI to a depth of 3 mm in tissues for small NPs and 4.74 mm for large NPs. CONCLUSIONS: 3DCD can monitor BBBD over time by detecting reversible anatomical changes in the PCA. In vivo 3DPAI at 15 MHz combined with circulating ICG and/or NPs with suitable properties can assess BBB opening 2 h post FUS.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Artérias Cerebrais/diagnóstico por imagem , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Técnicas Fotoacústicas , Ultrassonografia Doppler , Animais , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Imageamento Tridimensional , Verde de Indocianina , Imageamento por Ressonância Magnética , Camundongos , Microbolhas , Microscopia de Fluorescência , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/terapia
11.
Ultrasound Med Biol ; 44(11): 2379-2387, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30006213

RESUMO

High frequency micro-ultrasound (µUS) transducers with central frequencies up to 50 MHz facilitate dynamic visualization of patient anatomy with minimal disruption of the surgical work flow. Micro-ultrasound improves spatial resolution over conventional ultrasound imaging from millimeter to micrometer, but compromises depth penetration. This trade-off is sufficient during an open surgery in which the bone is removed and theultrasound probe can be placed into the surgical cavity. By fusing µUS with pre-operative imaging and tracking the ultrasound probe intra-operatively using our optical topographic imaging technology, we can provide dynamic feedback during surgery, thus affecting clinical decision making. We present our initial experience using high-frequency µUS imaging during spinal procedures. Micro-ultrasound images were obtained in five spinal procedures. Medical rationale for use of µUS was provided for each patient. Surgical procedures were performed using the standard clinical practice with bone removal to facilitate real-time ultrasound imaging of the soft tissue. During surgery, the µUS probe was registered to the pre-operative computed tomography and magnetic resonance images. Images obtained comprised five spinal decompression surgeries (four tumor resections, one cystic synovial mass). Micro-ultrasound images obtained during spine surgery delineated exquisite detailing of the spinal anatomy including white matter and gray matter tracts and nerve roots and allowed accurate assessment of the extent of decompression/tumor resection. In conclusion, tracked µUS enables real-time imaging of the surgical cavity, conferring significant qualitative improvement over conventional ultrasound.


Assuntos
Doenças da Coluna Vertebral/diagnóstico por imagem , Doenças da Coluna Vertebral/cirurgia , Transdutores , Ultrassonografia/instrumentação , Idoso , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Imagem Multimodal/métodos , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/cirurgia , Tomografia Computadorizada por Raios X/métodos
12.
Front Med (Lausanne) ; 5: 115, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29922650

RESUMO

Non-invasive bedside imaging tools are becoming more prevalent for assessing cutaneous lesions. Ultrasound used at specific frequencies allows us to assess margins of lesions to minimize the extent of the biopsy that is performed and improve cosmetic outcomes. Vascularity, seen on Doppler ultrasound and contrast-enhanced ultrasound, and stiffness, assessed on tissue elastography, can help differentiate between benign and malignant lesions for clinicians to be more judicious in deciding whether to biopsy. Moreover, research has shown the efficacy in using ultrasound in monitoring flares of hidradenitis suppurativa, a disease affecting apocrine gland-rich areas of the body, for which the current gold standard involves examining and scoring inflammatory lesions with the naked eye. Infrared-based modalities have also been on the uptrend to aid in clinical decision-making regarding suspiciousness of lesions. Reflectance confocal microscopy has lateral resolution that is comparable to histopathology and it has been shown to be an appropriate adjunctive tool to dermoscopy, specifically when evaluating melanomas. Optical coherence tomography has utility in determining lesion thickness because of its depth penetration, and spectrophotometric intracutaneous analysis is becoming more popular as a tool that can be used by general practitioners to know when to refer to dermatology regarding worrisome pigmented lesions. Strides have been made to incorporate electrical impedance spectroscopy alongside dermoscopy in decision-making regarding excision, although the evidence for its use in the clincial setting remains inconclusive. This paper reviews the efficacy and drawbacks of these techniques in the field of dermatology and suggests future directions.

13.
Mol Imaging Biol ; 20(2): 230-239, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28956265

RESUMO

PURPOSE: Contrast-enhanced ultrasound plays an expanding role in oncology, but its applicability to molecular imaging is hindered by a lack of nanoscale contrast agents that can reach targets outside the vasculature. Gas vesicles (GVs)-a unique class of gas-filled protein nanostructures-have recently been introduced as a promising new class of ultrasound contrast agents that can potentially access the extravascular space and be modified for molecular targeting. The purpose of the present study is to determine the quantitative biodistribution of GVs, which is critical for their development as imaging agents. PROCEDURES: We use a novel bioorthogonal radiolabeling strategy to prepare technetium-99m-radiolabeled ([99mTc])GVs in high radiochemical purity. We use single photon emission computed tomography (SPECT) and tissue counting to quantitatively assess GV biodistribution in mice. RESULTS: Twenty minutes following administration to mice, the SPECT biodistribution shows that 84 % of [99mTc]GVs are taken up by the reticuloendothelial system (RES) and 13 % are found in the gall bladder and duodenum. Quantitative tissue counting shows that the uptake (mean ± SEM % of injected dose/organ) is 0.6 ± 0.2 for the gall bladder, 46.2 ± 3.1 for the liver, 1.91 ± 0.16 for the lungs, and 1.3 ± 0.3 for the spleen. Fluorescence imaging confirmed the presence of GVs in RES. CONCLUSIONS: These results provide essential information for the development of GVs as targeted nanoscale imaging agents for ultrasound.


Assuntos
Acústica , Nanoestruturas/química , Proteínas/química , Compostos Radiofarmacêuticos/química , Animais , Feminino , Fluorescência , Imageamento Tridimensional , Fígado/diagnóstico por imagem , Camundongos , Baço/diagnóstico por imagem , Tecnécio/química , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único
14.
Nat Protoc ; 12(10): 2050-2080, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28880278

RESUMO

Gas vesicles (GVs) are a unique class of gas-filled protein nanostructures that are detectable at subnanomolar concentrations and whose physical properties allow them to serve as highly sensitive imaging agents for ultrasound and MRI. Here we provide a protocol for isolating GVs from native and heterologous host organisms, functionalizing these nanostructures with moieties for targeting and fluorescence, characterizing their biophysical properties and imaging them using ultrasound and MRI. GVs can be isolated from natural cyanobacterial and haloarchaeal host organisms or from Escherichia coli expressing a heterologous GV gene cluster and purified using buoyancy-assisted techniques. They can then be modified by replacing surface-bound proteins with engineered, heterologously expressed variants or through chemical conjugation, resulting in altered mechanical, surface and targeting properties. Pressurized absorbance spectroscopy is used to characterize their mechanical properties, whereas dynamic light scattering (DLS)and transmission electron microscopy (TEM) are used to determine nanoparticle size and morphology, respectively. GVs can then be imaged with ultrasound in vitro and in vivo using pulse sequences optimized for their detection versus background. They can also be imaged with hyperpolarized xenon MRI using chemical exchange saturation transfer between GV-bound and dissolved xenon-a technique currently implemented in vitro. Taking 3-8 d to prepare, these genetically encodable nanostructures enable multimodal, noninvasive biological imaging with high sensitivity and potential for molecular targeting.


Assuntos
Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Nanoestruturas/química , Ultrassonografia/métodos , Escherichia coli , Microscopia Eletrônica de Transmissão
15.
PLoS One ; 12(5): e0176958, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28472168

RESUMO

Prostate specific membrane antigen (PSMA) targeted microbubbles (MBs) were developed using bioorthogonal chemistry. Streptavidin-labeled MBs were treated with a biotinylated tetrazine (MBTz) and targeted to PSMA expressing cells using trans-cyclooctene (TCO)-functionalized anti-PSMA antibodies (TCO-anti-PSMA). The extent of MB binding to PSMA positive cells for two different targeting strategies was determined using an in vitro flow chamber. The initial approach involved pretargeting, where TCO-anti-PSMA was first incubated with PSMA expressing cells and followed by MBTz, which subsequently showed a 2.8 fold increase in the number of bound MBs compared to experiments performed in the absence of TCO-anti-PSMA. Using direct targeting, where TCO-anti-PSMA was linked to MBTz prior to initiation of the assay, a 5-fold increase in binding compared to controls was observed. The direct targeting approach was subsequently evaluated in vivo using a human xenograft tumor model and two different PSMA-targeting antibodies. The US signal enhancements observed were 1.6- and 5.9-fold greater than that for non-targeted MBs. The lead construct was also evaluated in a head-to-head study using mice bearing both PSMA positive or negative tumors in separate limbs. The human PSMA expressing tumors exhibited a 2-fold higher US signal compared to those tumors deficient in human PSMA. The results demonstrate both the feasibility of preparing PSMA-targeted MBs and the benefits of using bioorthogonal chemistry to create targeted US probes.


Assuntos
Antígenos de Superfície/metabolismo , Glutamato Carboxipeptidase II/metabolismo , Microbolhas , Neoplasias da Próstata/imunologia , Ultrassom , Animais , Anticorpos/imunologia , Antígenos de Superfície/imunologia , Glutamato Carboxipeptidase II/imunologia , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Nus , Neoplasias da Próstata/patologia
16.
Ultrasound Med Biol ; 43(5): 1016-1030, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28258771

RESUMO

Gas vesicles (GVs) are a new and unique class of biologically derived ultrasound contrast agents with sub-micron size whose acoustic properties have not been fully elucidated. In this study, we investigated the acoustic collapse pressure and behavior of Halobacterium salinarum gas vesicles at transmit center frequencies ranging from 12.5 to 27.5 MHz. The acoustic collapse pressure was found to be above 550 kPa at all frequencies, nine-fold higher than the critical pressure observed under hydrostatic conditions. We illustrate that gas vesicles behave non-linearly when exposed to ultrasound at incident pressure ranging from 160 kPa to the collapse pressure and generate second harmonic amplitudes of -2 to -6 dB below the fundamental in media with viscosities ranging from 0.89 to 8 mPa·s. Simulations performed using a Rayleigh-Plesset-type model accounting for buckling and a dynamic finite-element analysis suggest that buckling is the mechanism behind the generation of harmonics. We found good agreement between the level of second harmonic relative to the fundamental measured at 20 MHz and the Rayleigh-Plesset model predictions. Finite-element simulations extended these findings to a non-spherical geometry, confirmed that the acoustic buckling pressure corresponds to the critical pressure under hydrostatic conditions and support the hypothesis of limited gas flow across the GV shell during the compression phase in the frequency range investigated. From simulations, estimates of GV bandwidth-limited scattering indicate that a single GV has a scattering cross section comparable to that of a red blood cell. These findings will inform the development of GV-based contrast agents and pulse sequences to optimize their detection with ultrasound.


Assuntos
Meios de Contraste , Halobacterium salinarum , Ondas Ultrassônicas , Simulação por Computador , Microbolhas , Modelos Teóricos , Pressão
17.
Mol Imaging Biol ; 19(2): 194-202, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27519522

RESUMO

PURPOSE: The purposes of the present study is to evaluate a new ultrasound molecular imaging approach in its ability to image a preclinical tumor model and to investigate the capacity to visualize and quantify co-registered microvascular and molecular imaging volumes. PROCEDURES: Molecular imaging using the new technique was compared with a conventional ultrasound molecular imaging technique (multi-pulse imaging) by varying the injected microbubble dose and scanning each animal using both techniques. Each of the 14 animals was randomly assigned one of three doses; bolus dose was varied, and the animals were imaged for three consecutive days so that each animal received every dose. A microvascular scan was also acquired for each animal by administering an infusion of nontargeted microbubbles. These scans were paired with co-registered molecular images (VEGFR2-targeted microbubbles), the vessels were segmented, and the spatial relationships between vessels and VEGFR2 targeting locations were analyzed. In five animals, an additional scan was performed in which the animal received a bolus of microbubbles targeted to E- and P-selectins. Vessel tortuosity as a function of distance from VEGF and selectin targeting was analyzed in these animals. RESULTS: Although resulting differences in image intensity due to varying microbubble dose were not significant between the two lowest doses, superharmonic imaging had significantly higher contrast-to-tissue ratio (CTR) than multi-pulse imaging (mean across all doses 13.98 dB for molecular acoustic angiography vs. 0.53 dB for multi-pulse imaging; p = 4.9 × 10-10). Analysis of registered microvascular and molecular imaging volumes indicated that vessel tortuosity decreases with increasing distance from both VEGFR2- and selectin-targeting sites. CONCLUSIONS: Molecular acoustic angiography (superharmonic molecular imaging) exhibited a significant increase in CTR at all doses tested due to superior rejection of tissue artifact signals. Due to the high resolution of acoustic angiography molecular imaging, it is possible to analyze spatial relationships in aligned microvascular and molecular superharmonic imaging volumes. Future studies are required to separate the effects of biomarker expression and blood flow kinetics in comparing local tortuosity differences between different endothelial markers such as VEGFR2, E-selectin, and P-selectin.


Assuntos
Acústica , Angiografia/métodos , Imagem Molecular/métodos , Neoplasias/irrigação sanguínea , Neoplasias/diagnóstico por imagem , Animais , Meios de Contraste/química , Modelos Animais de Doenças , Processamento de Imagem Assistida por Computador , Microvasos/patologia , Ratos Endogâmicos F344
18.
Cancer Res ; 76(15): 4493-503, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27325647

RESUMO

VEGF pathway-targeting antiangiogenic drugs, such as bevacizumab, when combined with chemotherapy have changed clinical practice for the treatment of a broad spectrum of human cancers. However, adaptive resistance often develops, and one major mechanism is elevated tumor hypoxia and upregulated hypoxia-inducible factor-1α (HIF1α) caused by antiangiogenic treatment. Reduced tumor vessel numbers and function following antiangiogenic therapy may also affect intratumoral delivery of concurrently administered chemotherapy. Nonetheless, combining chemotherapy and bevacizumab can lead to improved response rates, progression-free survival, and sometimes, overall survival, the extent of which can partly depend on the chemotherapy backbone. A rational, complementing chemotherapy partner for combination with bevacizumab would not only reduce HIF1α to overcome hypoxia-induced resistance, but also improve tumor perfusion to maintain intratumoral drug delivery. Here, we evaluated bevacizumab and CRLX101, an investigational nanoparticle-drug conjugate containing camptothecin, in preclinical mouse models of orthotopic primary triple-negative breast tumor xenografts, including a patient-derived xenograft. We also evaluated long-term efficacy of CRLX101 and bevacizumab to treat postsurgical, advanced metastatic breast cancer in mice. CRLX101 alone and combined with bevacizumab was highly efficacious, leading to complete tumor regressions, reduced metastasis, and greatly extended survival of mice with metastatic disease. Moreover, CRLX101 led to improved tumor perfusion and reduced hypoxia, as measured by contrast-enhanced ultrasound and photoacoustic imaging. CRLX101 durably suppressed HIF1α, thus potentially counteracting undesirable effects of elevated tumor hypoxia caused by bevacizumab. Our preclinical results show pairing a potent cytotoxic nanoparticle chemotherapeutic that complements and improves concurrent antiangiogenic therapy may be a promising treatment strategy for metastatic breast cancer. Cancer Res; 76(15); 4493-503. ©2016 AACR.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Bevacizumab/uso terapêutico , Camptotecina/uso terapêutico , Ciclodextrinas/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/farmacologia , Animais , Bevacizumab/administração & dosagem , Bevacizumab/farmacologia , Camptotecina/administração & dosagem , Camptotecina/farmacologia , Linhagem Celular Tumoral , Ciclodextrinas/administração & dosagem , Ciclodextrinas/farmacologia , Feminino , Humanos , Camundongos , Camundongos SCID , Nanopartículas , Neoplasias de Mama Triplo Negativas/patologia
19.
Cancer Res ; 76(15): 4320-31, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27325651

RESUMO

Alterations in tumor perfusion and microenvironment have been shown to be associated with aggressive cancer phenotypes, raising the need for noninvasive methods of tracking these changes. Dynamic contrast-enhanced ultrasound (DCEUS) and photoacoustic (PA) imaging serve as promising candidates-one has the ability to measure tissue perfusion, whereas the other can be used to monitor tissue oxygenation and hemoglobin concentration. In this study, we investigated the relationship between the different functional parameters measured with DCEUS and PA imaging, using two morphologically different hind-limb tumor models and drug-induced alterations in an orthotopic breast tumor model. Imaging results showed some correlation between perfusion and oxygen saturation maps and the ability to sensitively monitor antivascular treatment. In addition, DCEUS measurements revealed different vascular densities in the core of specific tumors compared with their rims. Noncorrelated perfusion and hemoglobin concentration measurements facilitated discrimination between blood lakes and necrotic areas. Taken together, our results illustrate the utility of a combined contrast-enhanced ultrasound method with photoacoustic imaging to visualize blood flow patterns in tumors. Cancer Res; 76(15); 4320-31. ©2016 AACR.


Assuntos
Neoplasias/diagnóstico por imagem , Técnicas Fotoacústicas/métodos , Ultrassonografia/métodos , Animais , Meios de Contraste , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
20.
J Natl Cancer Inst ; 108(8)2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27059374

RESUMO

BACKGROUND: The anti-angiogenic Sorafenib is the only approved systemic therapy for advanced hepatocellular carcinoma (HCC). However, acquired resistance limits its efficacy. An emerging theory to explain intrinsic resistance to other anti-angiogenic drugs is 'vessel co-option,' ie, the ability of tumors to hijack the existing vasculature in organs such as the lungs or liver, thus limiting the need for sprouting angiogenesis. Vessel co-option has not been evaluated as a potential mechanism for acquired resistance to anti-angiogenic agents. METHODS: To study sorafenib resistance mechanisms, we used an orthotopic human HCC model (n = 4-11 per group), where tumor cells are tagged with a secreted protein biomarker to monitor disease burden and response to therapy. Histopathology, vessel perfusion assessed by contrast-enhanced ultrasound, and miRNA sequencing and quantitative real-time polymerase chain reaction were used to monitor changes in tumor biology. RESULTS: While sorafenib initially inhibited angiogenesis and stabilized tumor growth, no angiogenic 'rebound' effect was observed during development of resistance unless therapy was stopped. Instead, resistant tumors became more locally infiltrative, which facilitated extensive incorporation of liver parenchyma and the co-option of liver-associated vessels. Up to 75% (±10.9%) of total vessels were provided by vessel co-option in resistant tumors relative to 23.3% (±10.3%) in untreated controls. miRNA sequencing implicated pro-invasive signaling and epithelial-to-mesenchymal-like transition during resistance development while functional imaging further supported a shift from angiogenesis to vessel co-option. CONCLUSIONS: This is the first documentation of vessel co-option as a mechanism of acquired resistance to anti-angiogenic therapy and could have important implications including the potential therapeutic benefits of targeting vessel co-option in conjunction with vascular endothelial growth factor receptor signaling.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/irrigação sanguínea , Resistencia a Medicamentos Antineoplásicos , Neoplasias Hepáticas/irrigação sanguínea , Fígado/irrigação sanguínea , Neovascularização Patológica/metabolismo , Niacinamida/análogos & derivados , Compostos de Fenilureia/uso terapêutico , Actinas/metabolismo , Animais , Antígenos CD34/metabolismo , Vasos Sanguíneos/diagnóstico por imagem , Vasos Sanguíneos/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Meios de Contraste , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal/genética , Proteínas de Homeodomínio/genética , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos SCID , MicroRNAs/análise , Invasividade Neoplásica , Transplante de Neoplasias , Neovascularização Patológica/diagnóstico por imagem , Neovascularização Patológica/prevenção & controle , Niacinamida/uso terapêutico , Osteopontina/sangue , Proteínas Repressoras/genética , Análise de Sequência de RNA , Transdução de Sinais/genética , Sorafenibe , Ultrassonografia , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/sangue , Vimentina/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA