Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Proteome Res ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008777

RESUMO

Proteins undergo reversible S-acylation via a thioester linkage in vivo. S-palmitoylation, modification by C16:0 fatty acid, is a common S-acylation that mediates critical protein-membrane and protein-protein interactions. The most widely used S-acylation assays, including acyl-biotin exchange and acyl resin-assisted capture, utilize blocking of free Cys thiols, hydroxylamine-dependent cleavage of the thioester and subsequent labeling of nascent thiol. These assays generally require >500 µg of protein input material per sample and numerous reagent removal and washing steps, making them laborious and ill-suited for high throughput and low input applications. To overcome these limitations, we devised "Acyl-Trap", a suspension trap-based assay that utilizes a thiol-reactive quartz to enable buffer exchange and hydroxylamine-mediated S-acyl enrichment. We show that the method is compatible with protein-level detection of S-acylated proteins (e.g., H-Ras) as well as S-acyl site identification and quantification using "on trap" isobaric labeling and LC-MS/MS from as little as 20 µg of protein input. In mouse brain, Acyl-Trap identified 279 reported sites of S-acylation and 1298 previously unreported putative sites. Also described are conditions for long-term hydroxylamine storage, which streamline the assay. More generally, Acyl-Trap serves as a proof-of-concept for PTM-tailored suspension traps suitable for both traditional protein detection and chemoproteomic workflows.

2.
Front Physiol ; 15: 1248276, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699144

RESUMO

Introduction: It may take decades to develop cardiovascular dysfunction following exposure to high doses of ionizing radiation from medical therapy or from nuclear accidents. Since astronauts may be exposed continually to a complex space radiation environment unlike that experienced on Earth, it is unresolved whether there is a risk to cardiovascular health during long-term space exploration missions. Previously, we have described that mice exposed to a single dose of simplified Galactic Cosmic Ray (GCR5-ion) develop cardiovascular dysfunction by 12 months post-radiation. Methods: To investigate the biological basis of this dysfunction, here we performed a quantitative mass spectrometry-based proteomics analysis of heart tissue (proteome and phosphoproteome) and plasma (proteome only) from these mice at 8 months post-radiation. Results: Differentially expressed proteins (DEPs) for irradiated versus sham irradiated samples (fold-change ≥1.2 and an adjusted p-value of ≤0.05) were identified for each proteomics data set. For the heart proteome, there were 87 significant DEPs (11 upregulated and 76 downregulated); for the heart phosphoproteome, there were 60 significant differentially phosphorylated peptides (17 upregulated and 43 downregulated); and for the plasma proteome, there was only one upregulated protein. A Gene Set Enrichment Analysis (GSEA) technique that assesses canonical pathways from BIOCARTA, KEGG, PID, REACTOME, and WikiPathways revealed significant perturbation in pathways in each data set. For the heart proteome, 166 pathways were significantly altered (36 upregulated and 130 downregulated); for the plasma proteome, there were 73 pathways significantly altered (25 upregulated and 48 downregulated); and for the phosphoproteome, there were 223 pathways significantly affected at 0.1 adjusted p-value cutoff. Pathways related to inflammation were the most highly perturbed in the heart and plasma. In line with sustained inflammation, neutrophil extracellular traps (NETs) were demonstrated to be increased in GCR5-ion irradiated hearts at 12-month post irradiation. NETs play a fundamental role in combating bacterial pathogens, modulating inflammatory responses, inflicting damage on healthy tissues, and escalating vascular thrombosis. Discussion: These findings suggest that a single exposure to GCR5-ion results in long-lasting changes in the proteome and that these proteomic changes can potentiate acute and chronic health issues for astronauts, such as what we have previously described with late cardiac dysfunction in these mice.

3.
bioRxiv ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38585928

RESUMO

Proteins undergo reversible S-acylation via a thioester linkage in vivo. S-palmitoylation, modification by C16:0 fatty acid, is a common S-acylation that mediates critical protein-membrane and protein-protein interactions. The most widely used S-acylation assays, including acyl-biotin exchange and acyl resin-assisted capture, utilize blocking of free Cys thiols, hydroxylamine-dependent cleavage of the thioester and subsequent labeling of nascent thiol. These assays generally require >500 micrograms of protein input material per sample and numerous reagent removal and washing steps, making them laborious and ill-suited for high throughput and low input applications. To overcome these limitations, we devised "Acyl-Trap", a suspension trap-based assay that utilizes a thiol-reactive quartz to enable buffer exchange and hydroxylamine-mediated S-acyl enrichment. We show that the method is compatible with protein-level detection of S-acylated proteins (e.g. H-Ras) as well as S-acyl site identification and quantification using "on trap" isobaric labeling and LC-MS/MS from as little as 20 micrograms of protein input. In mouse brain, Acyl-Trap identified 279 reported sites of S-acylation and 1298 previously unreported putative sites. Also described are conditions for long-term hydroxylamine storage, which streamlines the assay. More generally, Acyl-Trap serves as a proof-of-concept for PTM-tailored suspension traps suitable for both traditional protein detection and chemoproteomic workflows.

4.
J Proteome Res ; 23(3): 1039-1048, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38353026

RESUMO

Sickle cell disease (SCD) is characterized by red blood cell sickling, vaso-occlusion, hemolytic anemia, damage to multiple organ systems, and, as a result, shortened life expectancy. Sickle cell disease nephropathy (SCDN) and pulmonary hypertension (pHTN) are common and frequently co-occurring complications of SCD; both are associated with markedly accelerated mortality. To identify candidate circulating biomarkers of SCDN and pHTN, we used mass spectrometry to quantify the relative abundance of >1000 proteins in plasma samples from 189 adults with SCD from the Outcome Modifying Genes in SCD (OMG-SCD) cohort (ProteomeXchange identifier PXD048716). Forty-four proteins were differentially abundant in SCDN, most significantly cystatin-C and collagen α-1(XVIII) chain (COIA1), and 55 proteins were dysregulated in patients with SCDN and pHTN, most significantly insulin-like growth factor-binding protein 6 (IBP6). Network analysis identified a module of 133 coregulated proteins significantly associated with SCDN, that was enriched for extracellular matrix proteins, insulin-like growth factor binding proteins, cell adhesion proteins, EGF-like calcium binding proteins, and several cadherin family members. Collectively, these data provide a comprehensive understanding of plasma protein changes in SCDN and pHTN which validate numerous studies of chronic kidney disease and suggest shared profiles of protein disruption in kidney dysfunction and pHTN among SCD patients.


Assuntos
Anemia Falciforme , Hipertensão Pulmonar , Doenças Vasculares , Adulto , Humanos , Hipertensão Pulmonar/genética , Proteômica , Anemia Falciforme/complicações , Anemia Falciforme/genética , Eritrócitos , Colágeno Tipo I
5.
Laryngoscope Investig Otolaryngol ; 8(1): 113-119, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36846407

RESUMO

Background: Pharyngocutaneous fistula (PCF) and salivary leaks are well known complications of head and neck surgery. The medical management of PCF has included the use of octreotide without a well-defined understanding of its therapeutic mechanism. We hypothesized that octreotide induces alterations in the saliva proteome and that these alterations may provide insight into the mechanism of action underlying improved PCF healing. We undertook an exploratory pilot study in healthy controls that involved collecting saliva before and after a subcutaneous injection of octreotide and performing proteomic analysis to determine the effects of octreotide. Methods: Four healthy adult participants provided saliva samples before and after subcutaneous injection of octreotide. A mass-spectrometry based workflow optimized for the quantitative proteomic analysis of biofluids was then employed to analyze changes in salivary protein abundance after octreotide administration. Results: There were 3076 human, 332 Streptococcus mitis, 102 G. haemolyans, and 42 Granulicatella adiacens protein groups quantified in saliva samples. A paired statistical analysis was performed using the generalized linear model (glm) function in edgeR. There were and ~300 proteins that had a p < .05 between the pre- and post-octreotide groups ~50 proteins with an FDR-corrected p < .05 between pre- and post-groups. These results were visualized using a volcano plot after filtering on proteins quantified by 2 more or unique precursors. Both human and bacterial proteins were among the proteins altered by octreotide treatment. Notably, four isoforms of the human cystatins, belonging to a family of cysteine proteases, that had significantly lower abundance after treatment. Conclusion: This pilot study demonstrated octreotide-induced downregulation of cystatins. By downregulation of cystatins in the saliva, there is decreased inhibition of cysteine proteases such as Cathepsin S. This results in increased cysteine protease activity that has been linked to enhanced angiogenic response, cell proliferation and migration that have resulted in improved wound healing. These insights provide first steps at furthering our understanding of octreotide's effects on saliva and reports of improved PCF healing.

6.
Am J Physiol Renal Physiol ; 324(4): F387-F403, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36794752

RESUMO

Chronic kidney disease (CKD) of uncertain etiology (CKDu) is a global health concern affecting tropical farming communities. CKDu is not associated with typical risk factors (e.g., diabetes) and strongly correlates with environmental drivers. To gain potential insights into disease etiology and diagnosis, here we report the first urinary proteome comparing patients with CKDu and non-CKDu controls from Sri Lanka. We found 944 differentially abundant proteins. In silico analyses identified 636 proteins of likely kidney and urogenital origin. As expected, renal tubular injury in patients with CKDu was evinced by increases in albumin, cystatin C, and ß2-microglobulin. However, several proteins typically elevated under CKD, including osteopontin and α-N-acetylglucosaminidase, were decreased in patients with CKDu. Furthermore, urinary excretion of aquaporins found higher in CKD was lower in CKDu. Comparisons with previous CKD urinary proteome datasets revealed a unique proteome for CKDu. Notably, the CKDu urinary proteome was relatively similar to that of patients with mitochondrial diseases. Furthermore, we report a decrease in endocytic receptor proteins responsible for protein reabsorption (megalin and cubilin) that correlated with an increase in abundance of 15 of their cognate ligands. Functional pathway analyses identified kidney-specific differentially abundant proteins in patients with CKDu denoted significant changes in the complement cascade and coagulation systems, cell death, lysosomal function, and metabolic pathways. Overall, our findings provide potential early detection markers to diagnose and distinguish CKDu and warrant further analyses on the role of lysosomal, mitochondrial, and protein reabsorption processes and their link to the complement system and lipid metabolism in CKDu onset and progression.NEW & NOTEWORTHY CKDu is a global health concern debilitating a number of tropical rural farming communities. In the absence of typical risk factors like diabetes and hypertension and the lack of molecular markers, it is crucial to identify potential early disease markers. Here, we detail the first urinary proteome profile to distinguish CKDu from CKD. Our data and in silico pathway analyses infer the roles of mitochondrial, lysosomal, and protein reabsorption processes in disease onset and progression.


Assuntos
Lisossomos , Mitocôndrias , Proteoma , Urina , Urina/química , Proteoma/análise , Mitocôndrias/metabolismo , Lisossomos/metabolismo , Proteínas/metabolismo , Insuficiência Renal Crônica , Simulação por Computador , Morte Celular , Redes e Vias Metabólicas , Metabolismo dos Lipídeos , Proteínas do Sistema Complemento
7.
Ann Surg ; 275(6): 1094-1102, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35258509

RESUMO

OBJECTIVE: To design and establish a prospective biospecimen repository that integrates multi-omics assays with clinical data to study mechanisms of controlled injury and healing. BACKGROUND: Elective surgery is an opportunity to understand both the systemic and focal responses accompanying controlled and well-characterized injury to the human body. The overarching goal of this ongoing project is to define stereotypical responses to surgical injury, with the translational purpose of identifying targetable pathways involved in healing and resilience, and variations indicative of aberrant peri-operative outcomes. METHODS: Clinical data from the electronic medical record combined with large-scale biological data sets derived from blood, urine, fecal matter, and tissue samples are collected prospectively through the peri-operative period on patients undergoing 14 surgeries chosen to represent a range of injury locations and intensities. Specimens are subjected to genomic, transcriptomic, proteomic, and metabolomic assays to describe their genetic, metabolic, immunologic, and microbiome profiles, providing a multidimensional landscape of the human response to injury. RESULTS: The highly multiplexed data generated includes changes in over 28,000 mRNA transcripts, 100 plasma metabolites, 200 urine metabolites, and 400 proteins over the longitudinal course of surgery and recovery. In our initial pilot dataset, we demonstrate the feasibility of collecting high quality multi-omic data at pre- and postoperative time points and are already seeing evidence of physiologic perturbation between timepoints. CONCLUSIONS: This repository allows for longitudinal, state-of-the-art geno-mic, transcriptomic, proteomic, metabolomic, immunologic, and clinical data collection and provides a rich and stable infrastructure on which to fuel further biomedical discovery.


Assuntos
Biologia Computacional , Proteômica , Genômica , Humanos , Metabolômica , Estudos Prospectivos , Proteômica/métodos
8.
Cell Chem Biol ; 28(1): 14-25.e9, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33176158

RESUMO

The benzdiimidazole NAB2 rescues α-synuclein-associated trafficking defects associated with early onset Parkinson's disease in a Nedd4-dependent manner. Despite identification of E3 ubiquitin ligase Nedd4 as a putative target of NAB2, its molecular mechanism of action has not been elucidated. As such, the effect of NAB2 on Nedd4 activity and specificity was interrogated through biochemical, biophysical, and proteomic analyses. NAB2 was found to bind Nedd4 (KDapp = 42 nM), but this binding is side chain mediated and does not alter its conformation or ubiquitination kinetics in vitro. Nedd4 co-localizes with trafficking organelles, and NAB2 exposure did not alter its co-localization. Ubiquitin enrichment coupled proteomics revealed that NAB2 stimulates ubiquitination of trafficking-associated proteins, most likely through modulating the substrate specificity of Nedd4, providing a putative protein network involved in the NAB2 mechanism and revealing trafficking scaffold protein TFG as a Nedd4 substrate.


Assuntos
Ubiquitina-Proteína Ligases Nedd4/antagonistas & inibidores , Doença de Parkinson/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Ubiquitina-Proteína Ligases Nedd4/isolamento & purificação , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Doença de Parkinson/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Blood Transfus ; 18(6): 454-464, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33000752

RESUMO

BACKGROUND: As a pooled donor blood product, cryoprecipitate (cryo) carries risks of pathogen transmission. Pathogen inactivation (PI) improves the safety of cryoprecipitate, but its effects on haemostatic properties remain unclear. This study investigated protein expression in samples of pathogen inactivated cryoprecipitate (PI-cryo) using non-targeted quantitative proteomics and in vitro haemostatic capacity of PI-cryo. MATERIALS AND METHODS: Whole blood (WB)- and apheresis (APH)-derived plasma was subject to PI with INTERCEPT® Blood System (Cerus Corporation, Concord, CA, USA) and cryo was prepared from treated plasma. Protein levels in PI-cryo and paired controls were quantified using liquid chromatography-tandem mass spectrometry. Functional haemostatic properties of PI-cryo were assessed using a microparticle (MP) prothrombinase assay, thrombin generation assay, and an in vitro coagulopathy model subjected to thromboelastometry. RESULTS: Over 300 proteins were quantified across paired PI-cryo and controls. PI did not alter the expression of coagulation factors, but levels of platelet-derived proteins and platelet-derived MPs were markedly lower in the WB PI-cryo group. Compared to controls, WB (but not APH) cryo samples demonstrated significantly lower MP prothrombinase activity, prolonged clotting time, and lower clot firmness on thromboelastometry after PI. However, PI did not affect overall thrombin generation variables in either group. DISCUSSION: Data from this study suggest that PI via INTERCEPT® Blood System does not significantly impact the coagulation factor content or function of cryo but reduces the higher MP content in WB-derived cryo. PI-cryo products may confer benefits in reducing pathogen transmission without affecting haemostatic function, but further in vivo assessment is warranted.


Assuntos
Proteínas Sanguíneas/efeitos dos fármacos , Proteínas Sanguíneas/efeitos da radiação , Segurança do Sangue , Infecções Transmitidas por Sangue/prevenção & controle , Patógenos Transmitidos pelo Sangue/efeitos dos fármacos , Patógenos Transmitidos pelo Sangue/efeitos da radiação , Viabilidade Microbiana , Plasma/efeitos dos fármacos , Plasma/efeitos da radiação , Inativação de Vírus , Remoção de Componentes Sanguíneos , Plaquetas/química , Preservação de Sangue , Proteínas Sanguíneas/análise , Micropartículas Derivadas de Células/enzimologia , Criopreservação , Furocumarinas/farmacologia , Furocumarinas/efeitos da radiação , Humanos , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Fotoquímica , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/efeitos da radiação , Plasma/microbiologia , Plasma/virologia , Tromboelastografia , Trombina/biossíntese , Tromboplastina/análise , Raios Ultravioleta , Inativação de Vírus/efeitos dos fármacos , Inativação de Vírus/efeitos da radiação
10.
JCI Insight ; 5(1)2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31941839

RESUMO

The T helper 2 (Th2) inflammatory cytokine interleukin-13 (IL-13) has been associated with both obstructive and fibrotic lung diseases; however, its specific effect on the epithelial stem cells in the gas exchange compartment of the lung (alveolar space) has not been explored. Here, we used in vivo lung models of homeostasis and repair, ex vivo organoid platforms, and potentially novel quantitative proteomic techniques to show that IL-13 disrupts the self-renewal and differentiation of both murine and human type 2 alveolar epithelial cells (AEC2s). Significantly, we find that IL-13 promotes ectopic expression of markers typically associated with bronchiolar airway cells and commonly seen in the alveolar region of lung tissue from patients with idiopathic pulmonary fibrosis. Furthermore, we identify a number of proteins that are differentially secreted by AEC2s in response to IL-13 and may provide biomarkers to identify subsets of patients with pulmonary disease driven by "Th2-high" biology.


Assuntos
Células Epiteliais Alveolares/metabolismo , Interleucina-13/metabolismo , Células-Tronco/metabolismo , Células Epiteliais Alveolares/efeitos dos fármacos , Animais , Diferenciação Celular , Citocinas/metabolismo , Células Epiteliais/metabolismo , Feminino , Homeostase , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Interleucina-13/genética , Interleucina-13/farmacologia , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Organoides/metabolismo , Proteômica , Células Th2/metabolismo , Uteroglobina/metabolismo
11.
J Biol Chem ; 294(36): 13336-13343, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31320475

RESUMO

Dynamic control of thioredoxin (Trx) oxidoreductase activity is essential for balancing the need of cells to rapidly respond to oxidative/nitrosative stress and to temporally regulate thiol-based redox signaling. We have previously shown that cytokine stimulation of the respiratory epithelium induces a precipitous decline in cell S-nitrosothiol, which depends upon enhanced Trx activity and proteasome-mediated degradation of Txnip (thioredoxin-interacting protein). We now show that tumor necrosis factor-α-induced Txnip degradation in A549 respiratory epithelial cells is regulated by the extracellular signal-regulated protein kinase (ERK) mitogen-activated protein kinase pathway and that ERK inhibition augments both intracellular reactive oxygen species and S-nitrosothiol. ERK-dependent Txnip ubiquitination and proteasome degradation depended upon phosphorylation of a PXTP motif threonine (Thr349) located within the C-terminal α-arrestin domain and proximal to a previously characterized E3 ubiquitin ligase-binding site. Collectively, these findings demonstrate the ERK mitogen-activated protein kinase pathway to be integrally involved in regulating Trx oxidoreductase activity and that the regulation of Txnip lifetime via ERK-dependent phosphorylation is an important mediator of this effect.


Assuntos
Proteínas de Transporte/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo , Células A549 , Humanos , Espectrometria de Massas , Células Tumorais Cultivadas
12.
J Proteome Res ; 18(8): 3032-3041, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31267741

RESUMO

Bispecific single chain antibody fragments (bi-scFv) represent an emerging class of biotherapeutics. We recently developed a fully human bi-scFv (EGFRvIII:CD3 bi-scFv) with the goal of redirecting CD3-expressing T cells to recognize and destroy malignant, EGFRvIII-expressing glioma. In mice, we showed that EGFRvIII:CD3 bi-scFv effectively treats orthotopic patient-derived malignant glioma and syngeneic glioblastoma. Here, we developed a targeted assay for pharmacokinetic (PK) analysis of EGFRvIII:CD3 bi-scFv, a necessary step in the drug development process. Using microflow liquid chromatography coupled to a high resolution parallel reaction monitoring mass spectrometry, and data analysis in Skyline, we developed a bottom-up proteomic assay for quantification of EGFRvIII:CD3 bi-scFv in both plasma and whole blood. Importantly, a protein calibrator, along with stable isotope-labeled EGFRvIII:CD3 bi-scFv protein, were used for absolute quantification. A PK analysis in a CD3 humanized mouse revealed that EGFRvIII:CD3 bi-scFv in plasma and whole blood has an initial half-life of ∼8 min and a terminal half-life of ∼2.5 h. Our results establish a sensitive, high-throughput assay for direct quantification of EGFRvIII:CD3 bi-scFv without the need for immunoaffinity enrichment. Moreover, these pharmacokinetic parameters will guide drug optimization and dosing regimens in future IND-enabling and phase I studies of EGFRvIII:CD3 bi-scFv.


Assuntos
Anticorpos Biespecíficos/sangue , Complexo CD3/sangue , Receptores ErbB/sangue , Glioblastoma/sangue , Animais , Anticorpos Biespecíficos/farmacocinética , Anticorpos Biespecíficos/uso terapêutico , Complexo CD3/farmacocinética , Complexo CD3/uso terapêutico , Linhagem Celular Tumoral , Cromatografia Líquida , Receptores ErbB/farmacocinética , Receptores ErbB/uso terapêutico , Glioblastoma/imunologia , Glioblastoma/terapia , Humanos , Espectrometria de Massas , Camundongos , Proteômica/métodos , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Am J Respir Cell Mol Biol ; 60(1): 58-67, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30156431

RESUMO

Human rhinovirus (RV), the major cause of the common cold, triggers the majority of acute airway exacerbations in patients with asthma and chronic obstructive pulmonary disease. Nitric oxide, and the related metabolite S-nitrosoglutathione, are produced in the airway epithelium via nitric oxide synthase (NOS) 2 and have been shown to function in host defense against RV infection. We hypothesized that inhibitors of the S-nitrosoglutathione-metabolizing enzyme, S-nitrosoglutathione reductase (GSNOR), might potentiate the antiviral properties of airway-derived NOS2. Using in vitro models of RV-A serotype 16 (RV-A16) and mNeonGreen-H1N1pr8 infection of human airway epithelial cells, we found that treatment with a previously characterized GSNOR inhibitor (4-[[2-[[(3-cyanophenyl)methyl]thio]-4-oxothieno-[3,2-d]pyrimidin-3(4H)-yl]methyl]-benzoic acid; referred to as C3m) decreased RV-A16 replication and expression of downstream proinflammatory and antiviral mediators (e.g., RANTES [regulated upon activation, normal T cell expressed and secreted], CXCL10, and Mx1), and increased Nrf2 (nuclear factor erythroid 2-related factor 2)-dependent genes (e.g., SQSTM1 and TrxR1). In contrast, C3m had no effect on influenza virus H1N1pr8 replication. Moreover, a structurally dissimilar GSNOR inhibitor (N6022) did not alter RV replication, suggesting that the properties of C3m may be specific to rhinovirus owing to an off-target effect. Consistent with this, C3m antiviral effects were not blocked by either NOS inhibition or GSNOR knockdown but appeared to be mediated by reduced intercellular adhesion molecule 1 transcription and increased shedding of soluble intercellular adhesion molecule 1 protein. Collectively these data show that C3m has novel antirhinoviral properties that may synergize with, but are unrelated to, its GSNOR inhibitor activity.


Assuntos
Aldeído Oxirredutases/antagonistas & inibidores , Brônquios/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Células Epiteliais/efeitos dos fármacos , Inflamação/tratamento farmacológico , Infecções por Picornaviridae/tratamento farmacológico , Rhinovirus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Benzamidas/farmacologia , Brônquios/metabolismo , Brônquios/virologia , Células Cultivadas , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Humanos , Inflamação/metabolismo , Inflamação/virologia , Óxido Nítrico Sintase Tipo II/metabolismo , Infecções por Picornaviridae/metabolismo , Infecções por Picornaviridae/virologia , Pirróis/farmacologia
14.
Cancer Res ; 78(22): 6462-6472, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30224375

RESUMO

UBE2N is a K63-specific ubiquitin conjugase linked to various immune disorders and cancer. Here, we demonstrate that UBE2N and its partners UBE2V1 and UBE2V2 are highly expressed in malignant melanoma. Silencing of UBE2N and its partners significantly decreased melanoma cell proliferation and subcutaneous tumor growth. This was accompanied by increased expression of E-cadherin, p16, and MC1R and decreased expression of melanoma malignancy markers including SOX10, Nestin, and ABCB5. Mass spectrometry-based phosphoproteomic analysis revealed that UBE2N loss resulted in distinct alterations to the signaling landscape: MEK/ERK signaling was impaired, FRA1 and SOX10 gene regulators were downregulated, and p53 and p16 tumor suppressors were upregulated. Similar to inhibition of UBE2N and MEK, silencing FRA1 decreased SOX10 expression and cell proliferation. Conversely, exogenous expression of active FRA1 increased pMEK and SOX10 expression, and restored anchorage-independent cell growth of cells with UBE2N loss. Systemic delivery of NSC697923, a small-molecule inhibitor of UBE2N, significantly decreased melanoma xenograft growth. These data indicate that UBE2N is a novel regulator of the MEK/FRA1/SOX10 signaling cascade and is indispensable for malignant melanoma growth. Our findings establish the basis for targeting UBE2N as a potential treatment strategy for melanoma.Significance: These findings identify ubiquitin conjugase UBE2N and its variant partners as novel regulators of MAPK signaling and potential therapeutic targets in melanoma. Cancer Res; 78(22); 6462-72. ©2018 AACR.


Assuntos
MAP Quinase Quinase 1/metabolismo , Melanoma/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fatores de Transcrição SOXE/metabolismo , Neoplasias Cutâneas/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Animais , Caderinas/metabolismo , Proliferação de Células , Sobrevivência Celular , Progressão da Doença , Inativação Gênica , Humanos , Melanócitos/metabolismo , Melanoma Experimental , Camundongos , Camundongos SCID , Transplante de Neoplasias , Proteômica , Transdução de Sinais , Microambiente Tumoral
15.
Am J Respir Cell Mol Biol ; 56(6): 784-795, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28248570

RESUMO

Bronchiolitis obliterans (BO) is an increasingly important lung disease characterized by fibroproliferative airway lesions and decrements in lung function. Occupational exposure to the artificial food flavoring ingredient diacetyl, commonly used to impart a buttery flavor to microwave popcorn, has been associated with BO development. In the occupational setting, diacetyl vapor is first encountered by the airway epithelium. To better understand the effects of diacetyl vapor on the airway epithelium, we used an unbiased proteomic approach to characterize both the apical and basolateral secretomes of air-liquid interface cultures of primary human airway epithelial cells from four unique donors after exposure to an occupationally relevant concentration (∼1,100 ppm) of diacetyl vapor or phosphate-buffered saline as a control on alternating days. Basolateral and apical supernatants collected 48 h after the third exposure were analyzed using one-dimensional liquid chromatography tandem mass spectrometry. Paired t tests adjusted for multiple comparisons were used to assess differential expression between diacetyl and phosphate-buffered saline exposure. Of the significantly differentially expressed proteins identified, 61 were unique to the apical secretome, 81 were unique to the basolateral secretome, and 11 were present in both. Pathway enrichment analysis using publicly available databases revealed that proteins associated with matrix remodeling, including degradation, assembly, and new matrix organization, were overrepresented in the data sets. Similarly, protein modifiers of epidermal growth factor receptor signaling were significantly altered. The ordered changes in protein expression suggest that the airway epithelial response to diacetyl may contribute to BO pathogenesis.


Assuntos
Diacetil/toxicidade , Células Epiteliais/metabolismo , Aromatizantes/toxicidade , Pneumopatias/metabolismo , Proteoma/metabolismo , Diferenciação Celular/efeitos dos fármacos , Receptores ErbB/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Humanos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pneumopatias/patologia , Proteômica , Transdução de Sinais/efeitos dos fármacos
16.
J Proteome Res ; 16(2): 538-549, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-27966365

RESUMO

Occupational exposures to the diketone flavoring agent, diacetyl, have been associated with bronchiolitis obliterans, a rare condition of airway fibrosis. Model studies in rodents have suggested that the airway epithelium is a major site of diacetyl toxicity, but the effects of diacetyl exposure upon the human airway epithelium are poorly characterized. Here we performed quantitative LC-MS/MS-based proteomics to study the effects of repeated diacetyl vapor exposures on 3D organotypic cultures of human primary tracheobronchial epithelial cells. Using a label-free approach, we quantified approximately 3400 proteins and 5700 phosphopeptides in cell lysates across four independent donors. Altered expression of proteins and phosphopeptides were suggestive of loss of cilia and increased squamous differentiation in diacetyl-exposed cells. These phenomena were confirmed by immunofluorescence staining of culture cross sections. Hyperphosphorylation and cross-linking of basal cell keratins were also observed in diacetyl-treated cells, and we used parallel reaction monitoring to confidently localize and quantify previously uncharacterized sites of phosphorylation in keratin 6. Collectively, these data identify numerous molecular changes in the epithelium that may be important to the pathogenesis of flavoring-induced bronchiolitis obliterans. More generally, this study highlights the utility of quantitative proteomics for the study of in vitro models of airway injury and disease.


Assuntos
Diacetil/toxicidade , Células Epiteliais/efeitos dos fármacos , Aromatizantes/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Proteoma/genética , Adolescente , Técnicas de Cultura de Células , Diferenciação Celular , Cílios/efeitos dos fármacos , Cílios/metabolismo , Cílios/ultraestrutura , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Ontologia Genética , Humanos , Queratina-6/química , Queratina-6/genética , Queratina-6/metabolismo , Masculino , Pessoa de Meia-Idade , Anotação de Sequência Molecular , Fosforilação/efeitos dos fármacos , Cultura Primária de Células , Proteoma/metabolismo , Mucosa Respiratória/citologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Volatilização , Adulto Jovem
17.
Antioxid Redox Signal ; 23(13): 1017-34, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26421519

RESUMO

AIMS: The heart responds to physiological and pathophysiological stress factors by increasing its production of nitric oxide (NO), which reacts with intracellular glutathione to form S-nitrosoglutathione (GSNO), a protein S-nitrosylating agent. Although S-nitrosylation protects some cardiac proteins against oxidative stress, direct effects on myofilament performance are unknown. We hypothesize that S-nitrosylation of sarcomeric proteins will modulate the performance of cardiac myofilaments. RESULTS: Incubation of intact mouse cardiomyocytes with S-nitrosocysteine (CysNO, a cell-permeable low-molecular-weight nitrosothiol) significantly decreased myofilament Ca(2+) sensitivity. In demembranated (skinned) fibers, S-nitrosylation with 1 µM GSNO also decreased Ca(2+) sensitivity of contraction and 10 µM reduced maximal isometric force, while inhibition of relaxation and myofibrillar ATPase required higher concentrations (≥ 100 µM). Reducing S-nitrosylation with ascorbate partially reversed the effects on Ca(2+) sensitivity and ATPase activity. In live cardiomyocytes treated with CysNO, resin-assisted capture of S-nitrosylated protein thiols was combined with label-free liquid chromatography-tandem mass spectrometry to quantify S-nitrosylation and determine the susceptible cysteine sites on myosin, actin, myosin-binding protein C, troponin C and I, tropomyosin, and titin. The ability of sarcomere proteins to form S-NO from 10-500 µM CysNO in intact cardiomyocytes was further determined by immunoblot, with actin, myosin, myosin-binding protein C, and troponin C being the more susceptible sarcomeric proteins. INNOVATION AND CONCLUSIONS: Thus, specific physiological effects are associated with S-nitrosylation of a limited number of cysteine residues in sarcomeric proteins, which also offer potential targets for interventions in pathophysiological situations.


Assuntos
Sinalização do Cálcio , Cisteína/análogos & derivados , Proteínas Musculares/metabolismo , Miócitos Cardíacos/metabolismo , Miofibrilas/metabolismo , S-Nitrosotióis/metabolismo , Animais , ATPase de Ca(2+) e Mg(2+)/metabolismo , Células Cultivadas , Cisteína/metabolismo , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Contração Miocárdica , Óxido Nítrico/metabolismo , Estresse Oxidativo , Sarcômeros
18.
Pediatr Blood Cancer ; 62(7): 1190-4, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25809122

RESUMO

BACKGROUND: Thrombosis in patients with acute lymphocytic leukemia (ALL) can develop after treatment with L-asparaginase (asp) and is often localized to the central nervous system (CNS). We hypothesize that changes in the cerebrospinal fluid (CSF) proteome will occur after asp therapy and will anticipate CNS clots. METHODS: Five newly diagnosed patients, ages 1-11 years, with ALL (n = 4) or lymphoblastic lymphoma (LL) (n = 1) underwent serial lumbar punctures during induction. CSF was depleted of abundant plasma proteins and analyzed by gel-free, label-free quantitative proteomics. RESULTS: More than 600 proteins were quantified across all CSF samples. In four subjects, the expression of proteins involved in coagulation such as protein C Inhibitor (SERPINA5) and heparin cofactor II (SERPIND1) changed over the course of asp therapy. Antithrombin III (ATIII) and plasminogen (PLMN) levels were shown to have decreased expression over time in one child who developed a CNS thrombosis, compared to other subjects. CONCLUSIONS: CSF proteomics is feasible and reproducible in ALL and LL. CSF ATIII and PLMN should be further investigated as predictive markers of CNS thrombosis.


Assuntos
Biomarcadores/líquido cefalorraquidiano , Encefalopatias/líquido cefalorraquidiano , Leucemia-Linfoma Linfoblástico de Células Precursoras/líquido cefalorraquidiano , Proteômica/métodos , Trombose/líquido cefalorraquidiano , Adolescente , Adulto , Encefalopatias/etiologia , Criança , Pré-Escolar , Cromatografia Líquida , Feminino , Seguimentos , Humanos , Lactente , Recém-Nascido , Masculino , Projetos Piloto , Leucemia-Linfoma Linfoblástico de Células Precursoras/complicações , Estudos Prospectivos , Espectrometria de Massas em Tandem , Trombose/etiologia , Adulto Jovem
19.
J Proteome Res ; 14(2): 1238-49, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25541672

RESUMO

The proteomic analysis of bronchoalveolar lavage fluid (BALF) can give insight into pulmonary disease pathology and response to therapy. Here, we describe the first gel-free quantitative analysis of BALF in idiopathic pulmonary fibrosis (IPF), a chronic and fatal scarring lung disease. We utilized two-dimensional reversed-phase liquid chromatography and ion-mobility-assisted data-independent acquisition (HDMSE) for quantitation of >1000 proteins in immunodepleted BALF from the right middle and lower lobes of normal controls and patients with IPF. Among the analytes that were increased in IPF were well-described mediators of pulmonary fibrosis (osteopontin, MMP7, CXCL7, CCL18), eosinophil- and neutrophil-derived proteins, and proteins associated with fibroblast foci. For additional discovery and targeted validation, BALF was also screened by multiple reaction monitoring (MRM), using the JPT Cytokine SpikeMix library of >400 stable isotope-labeled peptides. A refined MRM assay confirmed the robust expression of osteopontin, and demonstrated, for the first time, upregulation of the pro-fibrotic cytokine, CCL24, in BALF in IPF. These results show the utility of BALF proteomics for the molecular profiling of fibrotic lung diseases and the targeted quantitation of soluble markers of IPF. More generally, this study addresses critical quality control measures that should be widely applicable to BALF profiling in pulmonary disease.


Assuntos
Líquido da Lavagem Broncoalveolar , Fibrose Pulmonar Idiopática/metabolismo , Proteômica , Eletroforese em Gel de Poliacrilamida , Humanos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem
20.
J Proteome Res ; 13(8): 3722-32, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25025725

RESUMO

Pulmonary surfactant protein A (SP-A), a heterooligomer of SP-A1 and SP-A2, is an important regulator of innate immunity of the lung. Nonsynonymous single nucleotide variants of SP-A have been linked to respiratory diseases, but the expressed repertoire of SP-A protein in human airway has not been investigated. Here, we used parallel trypsin and Glu-C digestion, followed by LC-MS/MS, to obtain sequence coverage of common SP-A variants and isoform-determining peptides. We further developed a SDS-PAGE-based, multiple reaction monitoring (GeLC-MRM) assay for enrichment and targeted quantitation of total SP-A, the SP-A2 isoform, and the Gln223 and Lys223 variants of SP-A, from as little as one milliliter of bronchoalveolar lavage fluid. This assay identified individuals with the three genotypes at the 223 position of SP-A2: homozygous major (Gln223/Gln223), homozygous minor (Lys223/Lys223), or heterozygous (Gln223/Lys223). More generally, our studies demonstrate the challenges inherent in distinguishing highly homologous, copurifying protein isoforms by MS and show the applicability of MRM mass spectrometry for identification and quantitation of nonsynonymous single nucleotide variants and other proteoforms in airway lining fluid.


Assuntos
Proteína A Associada a Surfactante Pulmonar/química , Adolescente , Adulto , Sequência de Aminoácidos , Lavagem Broncoalveolar , Líquido da Lavagem Broncoalveolar , Cromatografia Líquida , Variação Genética , Genótipo , Voluntários Saudáveis , Heterozigoto , Humanos , Pulmão/metabolismo , Espectrometria de Massas , Dados de Sequência Molecular , Peptídeos/química , Polimorfismo de Nucleotídeo Único , Isoformas de Proteínas/química , Proteômica , Homologia de Sequência de Aminoácidos , Serina Endopeptidases/química , Espectrometria de Massas em Tandem , Tripsina/química , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA