Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 11583, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463950

RESUMO

In grafted apple, rootstock-derived signals influence scion cold tolerance by initiating physiological changes to survive over the winter. To understand the underlying molecular interactions between scion and rootstock responsive to cold, we developed transcriptomics and metabolomics data in the stems of two scion/rootstock combinations, 'Gala'/'G202' (cold resistant rootstock) and 'Gala'/'M9' (cold susceptible rootstock). Outer layers of scion and rootstock stem, including vascular tissues, were collected from the field-grown grafted apple during the winter. The clustering of differentially expressed genes (DEGs) and gene ontology enrichment indicated distinct expression dynamics in the two graft combinations, which supports the dependency of scion cold tolerance on the rootstock genotypes. We identified 544 potentially mobile mRNAs of DEGs showing highly-correlated seasonal dynamics between scion and rootstock. The mobility of a subset of 544 mRNAs was validated by translocated genome-wide variants and the measurements of selected RNA mobility in tobacco and Arabidopsis. We detected orthologous genes of potentially mobile mRNAs in Arabidopsis thaliana, which belong to cold regulatory networks with RNA mobility. Together, our study provides a comprehensive insight into gene interactions and signal exchange between scion and rootstock responsive to cold. This will serve for future research to enhance cold tolerance of grafted tree crops.


Assuntos
Malus , Malus/genética , Malus/metabolismo , RNA/metabolismo , Perfilação da Expressão Gênica , Metabolômica , Genótipo
2.
G3 (Bethesda) ; 11(7)2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34009255

RESUMO

Commercially grown kiwifruit (genus Actinidia) are generally of two sub-species which have a base haploid genome of 29 chromosomes. The yellow-fleshed Actinidia chinensis var. chinensis, is either diploid (2n = 2x = 58) or tetraploid (2n = 4x = 116) and the green-fleshed cultivar A. chinensis var. deliciosa "Hayward," is hexaploid (2n = 6x = 174). Advances in breeding green kiwifruit could be greatly sped up by the use of molecular resources for more efficient and faster selection, for example using marker-assisted selection (MAS). The key genetic marker that has been implemented for MAS in hexaploid kiwifruit is for gender testing. The limited marker-trait association has been reported for other polyploid kiwifruit for fruit and production traits. We have constructed a high-density linkage map for hexaploid green kiwifruit using genotyping-by-sequence (GBS). The linkage map obtained consists of 3686 and 3940 markers organized in 183 and 176 linkage groups for the female and male parents, respectively. Both parental linkage maps are co-linear with the A. chinensis "Red5" reference genome of kiwifruit. The linkage map was then used for quantitative trait locus (QTL) mapping, and successfully identified QTLs for king flower number, fruit number and weight, dry matter accumulation, and storage firmness. These are the first QTLs to be reported and discovered for complex traits in hexaploid kiwifruit.


Assuntos
Actinidia , Actinidia/genética , Frutas/genética , Genótipo , Melhoramento Vegetal , Mapeamento Cromossômico
3.
Hortic Res ; 6: 116, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31645970

RESUMO

Rubus fruits are high-value crops that are sought after by consumers for their flavor, visual appeal, and health benefits. To meet this demand, production of red and black raspberries (R. idaeus L. and R. occidentalis L.), blackberries (R. subgenus Rubus), and hybrids, such as Boysenberry and marionberry, is growing worldwide. Rubus breeding programmes are continually striving to improve flavor, texture, machine harvestability, and yield, provide pest and disease resistance, improve storage and processing properties, and optimize fruits and plants for different production and harvest systems. Breeders face numerous challenges, such as polyploidy, the lack of genetic diversity in many of the elite cultivars, and until recently, the relative shortage of genetic and genomic resources available for Rubus. This review will highlight the development of continually improving genetic maps, the identification of Quantitative Trait Loci (QTL)s controlling key traits, draft genomes for red and black raspberry, and efforts to improve gene models. The development of genetic maps and markers, the molecular characterization of wild species and germplasm, and high-throughput genotyping platforms will expedite breeding of improved cultivars. Fully sequenced genomes and accurate gene models facilitate identification of genes underlying traits of interest and enable gene editing technologies such as CRISPR/Cas9.

4.
Plant Cell ; 14(7): 1497-508, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12119370

RESUMO

Phloem-mobile endogenous RNA is trafficked selectively into the shoot apex. In contrast, most viruses and long-distance post-transcriptional gene silencing (PTGS) signals are excluded from the shoot apex. These observations suggest the operation of an underlying regulatory mechanism. To examine this possibility, a potexvirus movement protein, known to modify cell-to-cell trafficking and PTGS, was expressed ectopically in transgenic plants. These plants were found to be compromised in their capacity to exclude both viral RNA and silencing signals from the shoot apex. The transgenic plants also displayed various degrees of abnormal leaf polarity depending on transgene expression level. Normal patterns of organ development were restored by either virus- or Agrobacterium tumefaciens-mediated induction of PTGS. This revealed the presence of an RNA signal surveillance system that acts to allow the selective entry of RNA into the shoot apex. We propose that this surveillance system regulates signaling and protects the shoot apex, in particular the cells that give rise to reproductive structures, from viral invasion.


Assuntos
Nicotiana/genética , Brotos de Planta/genética , RNA de Plantas/genética , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Regulação Viral da Expressão Gênica , Inativação Gênica/fisiologia , Hibridização In Situ , Fenótipo , Folhas de Planta/crescimento & desenvolvimento , Brotos de Planta/virologia , Plantas Geneticamente Modificadas , Potexvirus/genética , Potexvirus/fisiologia , RNA de Plantas/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/fisiologia , Transdução de Sinais/genética , Nicotiana/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA