RESUMO
BACKGROUND: Advancements in artificial intelligence and the development of shape models that quantify normal head shape and facial morphology provide frameworks by which the outcomes of craniofacial surgery can be compared. In this work, we will demonstrate the use of the Swap Disentangled Variational Autoencoder (SD-VAE) to objectively assess changes following midfacial surgery. MATERIALS AND METHODS: Our model is trained on a dataset of 1405 3D meshes of healthy and syndromic patients which was augmented using a technique based on spectral interpolation. Patients with a diagnosis of Apert and Crouzon syndrome who had undergone sub- or trans-cranial midfacial procedures utilising rigid external distraction were then interpreted using this model as the point of comparison. RESULTS: A total of 56 patients met our inclusion criteria, 20 with Apert and 36 with Crouzon syndrome. By using linear discriminant analysis to project the high-dimensional vectors derived by SD-VAE onto a 2D space, the shape properties of Apert and Crouzon syndrome can be visualised in relation to the healthy population. In this way, we are able to show how surgery elicits global shape changes in each patient. To assess the regional movements achieved during surgery, we use a novel metric derived from the Malahanobis distance to quantify movements through the latent space. CONCLUSION: Objective outcome evaluation, which encourages in-depth analysis and enhances decision making, is essential for the progression of surgical practice. We have demonstrated how artificial intelligence has the ability to improve our understanding of surgery and its effect on craniofacial morphology.
RESUMO
PURPOSE: Complications related to vascular damage such as intra-operative bleeding may be avoided during neurosurgical procedures such as petroclival meningioma surgery. To address this and improve the patient's safety, we designed a real-time blood vessel avoidance strategy that enables operation on deformable tissue during petroclival meningioma surgery using Micron, a handheld surgical robotic tool. METHODS: We integrated real-time intra-operative blood vessel segmentation of brain vasculature using deep learning, with a 3D reconstruction algorithm to obtain the vessel point cloud in real time. We then implemented a virtual-fixture-based strategy that prevented Micron's tooltip from entering a forbidden region around the vessel, thus avoiding damage to it. RESULTS: We achieved a median Dice similarity coefficient of 0.97, 0.86, 0.87 and 0.77 on datasets of phantom blood vessels, petrosal vein, internal carotid artery and superficial vessels, respectively. We conducted trials with deformable clay vessel phantoms, keeping the forbidden region 400 [Formula: see text]m outside and 400 [Formula: see text]m inside the vessel. Micron's tip entered the forbidden region with a median penetration of just 8.84 [Formula: see text]m and 9.63 [Formula: see text]m, compared to 148.74 [Formula: see text]m and 117.17 [Formula: see text]m without our strategy, for the former and latter trials, respectively. CONCLUSION: Real-time control of Micron was achieved at 33.3 fps. We achieved improvements in real-time segmentation of brain vasculature from intra-operative images and showed that our approach works even on non-stationary vessel phantoms. The results suggest that by enabling precise, real-time control, we are one step closer to using Micron in real neurosurgical procedures.
Assuntos
Neoplasias Meníngeas , Meningioma , Algoritmos , Humanos , Neoplasias Meníngeas/diagnóstico por imagem , Neoplasias Meníngeas/cirurgia , Meningioma/diagnóstico por imagem , Meningioma/cirurgia , Procedimentos Neurocirúrgicos , Imagens de FantasmasRESUMO
Microsurgical procedures, such as petroclival meningioma resection, require careful surgical actions in order to remove tumor tissue, while avoiding brain and vessel damaging. Such procedures are currently performed under microscope magnification. Robotic tools are emerging in order to filter surgeons' unintended movements and prevent tools from entering forbidden regions such as vascular structures. The present work investigates the use of a handheld robotic tool (Micron) to automate vessel avoidance in microsurgery. In particular, we focused on vessel segmentation, implementing a deep-learning-based segmentation strategy in microscopy images, and its integration with a feature-based passive 3D reconstruction algorithm to obtain accurate and robust vessel position. We then implemented a virtual-fixture-based strategy to control the handheld robotic tool and perform vessel avoidance. Clay vascular phantoms, lying on a background obtained from microscopy images recorded during petroclival meningioma surgery, were used for testing the segmentation and control algorithms. When testing the segmentation algorithm on 100 different phantom images, a median Dice similarity coefficient equal to 0.96 was achieved. A set of 25 Micron trials of 80 s in duration, each involving the interaction of Micron with a different vascular phantom, were recorded, with a safety distance equal to 2 mm, which was comparable to the median vessel diameter. Micron's tip entered the forbidden region 24% of the time when the control algorithm was active. However, the median penetration depth was 16.9 µm, which was two orders of magnitude lower than median vessel diameter. Results suggest the system can assist surgeons in performing safe vessel avoidance during neurosurgical procedures.