RESUMO
Receptor-interacting serine/threonine protein kinase 4 (RIPK4) and its kinase substrate the transcription factor interferon regulatory factor 6 (IRF6) play critical roles in the development and maintenance of the epidermis. In addition, ourselves and others have previously shown that RIPK4 is a NOTCH target gene that suppresses the development of cutaneous and head and neck squamous cell carcinomas (HNSCCs). In this study, we used autochthonous mouse models, where the expression of Pik3caH1047R oncogene predisposes the skin and oral cavity to tumor development, and show that not only loss of Ripk4, but also loss of its kinase substrate Irf6, triggers rapid SCC development. In vivo rescue experiments using Ripk4 or a kinase-dead Ripk4 mutant showed that the tumor suppressive function of Ripk4 is dependent on its kinase activity. To elucidate critical mediators of this tumor suppressive pathway, we performed transcriptional profiling of Ripk4-deficient epidermal cells followed by multiplexed in vivo CRISPR screening to identify genes with tumor suppressive capabilities. We show that Elovl4 is a critical Notch-Ripk4-Irf6 downstream target gene, and that Elovl4 loss itself triggers SCC development. Importantly, overexpression of Elovl4 suppressed tumor growth of Ripk4-deficient keratinocytes. Altogether, our work identifies a potent Notch1-Ripk4-Irf6-Elovl4 tumor suppressor axis.
RESUMO
Most rare clinical missense variants cannot currently be classified as pathogenic or benign. Deficiency in human 5,10-methylenetetrahydrofolate reductase (MTHFR), the most common inherited disorder of folate metabolism, is caused primarily by rare missense variants. Further complicating variant interpretation, variant impacts often depend on environment. An important example of this phenomenon is the MTHFR variant p.Ala222Val (c.665C>T), which is carried by half of all humans and has a phenotypic impact that depends on dietary folate. Here we describe the results of 98,336 variant functional-impact assays, covering nearly all possible MTHFR amino acid substitutions in four folinate environments, each in the presence and absence of p.Ala222Val. The resulting atlas of MTHFR variant effects reveals many complex dependencies on both folinate and p.Ala222Val. MTHFR atlas scores can distinguish pathogenic from benign variants and, among individuals with severe MTHFR deficiency, correlate with age of disease onset. Providing a powerful tool for understanding structure-function relationships, the atlas suggests a role for a disordered loop in retaining cofactor at the active site and identifies variants that enable escape of inhibition by S-adenosylmethionine. Thus, a model based on eight MTHFR variant effect maps illustrates how shifting landscapes of environment- and genetic-background-dependent missense variation can inform our clinical, structural, and functional understanding of MTHFR deficiency.
Assuntos
Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Mutação de Sentido Incorreto , Substituição de Aminoácidos , Análise Mutacional de DNA , Diploide , Biblioteca Gênica , Genótipo , Humanos , Metilenotetra-Hidrofolato Redutase (NADPH2)/deficiência , Metilenotetra-Hidrofolato Redutase (NADPH2)/fisiologia , Saccharomyces cerevisiae/genéticaRESUMO
BACKGROUND: For the majority of rare clinical missense variants, pathogenicity status cannot currently be classified. Classical homocystinuria, characterized by elevated homocysteine in plasma and urine, is caused by variants in the cystathionine beta-synthase (CBS) gene, most of which are rare. With early detection, existing therapies are highly effective. METHODS: Damaging CBS variants can be detected based on their failure to restore growth in yeast cells lacking the yeast ortholog CYS4. This assay has only been applied reactively, after first observing a variant in patients. Using saturation codon-mutagenesis, en masse growth selection, and sequencing, we generated a comprehensive, proactive map of CBS missense variant function. RESULTS: Our CBS variant effect map far exceeds the performance of computational predictors of disease variants. Map scores correlated strongly with both disease severity (Spearman's ϱ = 0.9) and human clinical response to vitamin B6 (ϱ = 0.93). CONCLUSIONS: We demonstrate that highly multiplexed cell-based assays can yield proactive maps of variant function and patient response to therapy, even for rare variants not previously seen in the clinic.