Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2857, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565848

RESUMO

PARP2 is a DNA-dependent ADP-ribosyl transferase (ARTs) enzyme with Poly(ADP-ribosyl)ation activity that is triggered by DNA breaks. It plays a role in the Base Excision Repair pathway, where it has overlapping functions with PARP1. However, additional roles for PARP2 have emerged in the response of cells to replication stress. In this study, we demonstrate that PARP2 promotes replication stress-induced telomere fragility and prevents telomere loss following chronic induction of oxidative DNA lesions and BLM helicase depletion. Telomere fragility results from the activity of the break-induced replication pathway (BIR). During this process, PARP2 promotes DNA end resection, strand invasion and BIR-dependent mitotic DNA synthesis by orchestrating POLD3 recruitment and activity. Our study has identified a role for PARP2 in the response to replication stress. This finding may lead to the development of therapeutic approaches that target DNA-dependent ART enzymes, particularly in cancer cells with high levels of replication stress.


Assuntos
Reparo do DNA , DNA , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , DNA/metabolismo , Dano ao DNA , DNA Helicases/genética , DNA Helicases/metabolismo , Telômero/genética , Telômero/metabolismo
2.
NAR Cancer ; 5(2): zcad019, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37180029

RESUMO

Centromeres play a crucial role in DNA segregation by mediating the cohesion and separation of sister chromatids during cell division. Centromere dysfunction, breakage or compromised centromeric integrity can generate aneuploidies and chromosomal instability, which are cellular features associated with cancer initiation and progression. Maintaining centromere integrity is thus essential for genome stability. However, the centromere itself is prone to DNA breaks, likely due to its intrinsically fragile nature. Centromeres are complex genomic loci that are composed of highly repetitive DNA sequences and secondary structures and require the recruitment and homeostasis of a centromere-associated protein network. The molecular mechanisms engaged to preserve centromere inherent structure and respond to centromeric damage are not fully understood and remain a subject of ongoing research. In this article, we provide a review of the currently known factors that contribute to centromeric dysfunction and the molecular mechanisms that mitigate the impact of centromere damage on genome stability. Finally, we discuss the potential therapeutic strategies that could arise from a deeper understanding of the mechanisms preserving centromere integrity.

3.
Sci Transl Med ; 14(662): eabq3215, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36103513

RESUMO

Arginine-rich dipeptide repeat proteins (R-DPRs), abnormal translational products of a GGGGCC hexanucleotide repeat expansion in C9ORF72, play a critical role in C9ORF72-related amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), the most common genetic form of the disorders (c9ALS/FTD). R-DPRs form liquid condensates in vitro, induce stress granule formation in cultured cells, aggregate, and sometimes coaggregate with TDP-43 in postmortem tissue from patients with c9ALS/FTD. However, how these processes are regulated is unclear. Here, we show that loss of poly(ADP-ribose) (PAR) suppresses neurodegeneration in c9ALS/FTD fly models and neurons differentiated from patient-derived induced pluripotent stem cells. Mechanistically, PAR induces R-DPR condensation and promotes R-DPR-induced stress granule formation and TDP-43 aggregation. Moreover, PAR associates with insoluble R-DPR and TDP-43 in postmortem tissue from patients. These findings identified PAR as a promoter of R-DPR toxicity and thus a potential target for treating c9ALS/FTD.


Assuntos
Demência Frontotemporal , Arginina , Proteína C9orf72/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dipeptídeos/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Humanos , Poli Adenosina Difosfato Ribose
4.
Res Sq ; 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35441168

RESUMO

The repertoire of coronavirus disease 2019 (COVID-19)-mediated adverse health outcomes has continued to expand in infected patients, including the susceptibility to developing long-COVID; however, the molecular underpinnings at the cellular level are poorly defined. In this study, we report that SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection triggers host cell genome instability by modulating the expression of molecules of DNA repair and mutagenic translesion synthesis. Further, SARS-CoV-2 infection causes genetic alterations, such as increased mutagenesis, telomere dysregulation, and elevated microsatellite instability (MSI). The MSI phenotype was coupled to reduced MLH1, MSH6, and MSH2 in infected cells. Strikingly, pre-treatment of cells with the REV1-targeting translesion DNA synthesis inhibitor, JH-RE-06, suppresses SARS-CoV-2 proliferation and dramatically represses the SARS-CoV-2-dependent genome instability. Mechanistically, JH-RE-06 treatment induces autophagy, which we hypothesize limits SARS-CoV-2 proliferation and, therefore, the hijacking of host-cell genome instability pathways. These results have implications for understanding the pathobiological consequences of COVID-19.

5.
Cell Mol Life Sci ; 79(4): 215, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35348914

RESUMO

The ADP-ribose transferase (ART) family comprises 17 enzymes that catalyze mono- or poly-ADP-ribosylation, a post-translational modification of proteins. Present in all subcellular compartments, ARTs are implicated in a growing number of biological processes including DNA repair, replication, transcription regulation, intra- and extra-cellular signaling, viral infection and cell death. Five members of the family, PARP1, PARP2, PARP3, tankyrase 1 and tankyrase 2 are mainly described for their crucial functions in the maintenance of genome stability. It is well established that the most describedrole of PARP1, 2 and 3 is the repair of DNA lesions while tankyrases 1 and 2 are crucial for maintaining the integrity of telomeres. Telomeres, nucleoprotein complexes located at the ends of eukaryotic chromosomes, utilize their unique structure and associated set of proteins to orchestrate the mechanisms necessary for their own protection and replication. While the functions of tankyrases 1 and 2 at telomeres are well known, several studies have also brought PARP1, 2 and 3 to the forefront of telomere protection. The singular quality of the telomeric environment has highlighted protein interactions and molecular pathways distinct from those described throughout the genome. The aim of this review is to provide an overview of the current knowledge on the multiple roles of PARP1, PARP2, PARP3, tankyrase 1 and tankyrase 2 in the maintenance and preservation of telomere integrity.


Assuntos
ADP Ribose Transferases , Telômero , ADP Ribose Transferases/metabolismo , Adenosina Difosfato Ribose/metabolismo , Reparo do DNA , Instabilidade Genômica , Humanos , Telômero/genética , Telômero/metabolismo
6.
Proc Natl Acad Sci U S A ; 116(37): 18435-18444, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31451640

RESUMO

Reactive oxygen species (ROS) play important roles in aging, inflammation, and cancer. Mitochondria are an important source of ROS; however, the spatiotemporal ROS events underlying oxidative cellular damage from dysfunctional mitochondria remain unresolved. To this end, we have developed and validated a chemoptogenetic approach that uses a mitochondrially targeted fluorogen-activating peptide (Mito-FAP) to deliver a photosensitizer MG-2I dye exclusively to this organelle. Light-mediated activation (660 nm) of the Mito-FAP-MG-2I complex led to a rapid loss of mitochondrial respiration, decreased electron transport chain complex activity, and mitochondrial fragmentation. Importantly, one round of singlet oxygen produced a persistent secondary wave of mitochondrial superoxide and hydrogen peroxide lasting for over 48 h after the initial insult. By following ROS intermediates, we were able to detect hydrogen peroxide in the nucleus through ratiometric analysis of the oxidation of nuclear cysteine residues. Despite mitochondrial DNA (mtDNA) damage and nuclear oxidative stress induced by dysfunctional mitochondria, there was a lack of gross nuclear DNA strand breaks and apoptosis. Targeted telomere analysis revealed fragile telomeres and telomere loss as well as 53BP1-positive telomere dysfunction-induced foci (TIFs), indicating that DNA double-strand breaks occurred exclusively in telomeres as a direct consequence of mitochondrial dysfunction. These telomere defects activated ataxia-telangiectasia mutated (ATM)-mediated DNA damage repair signaling. Furthermore, ATM inhibition exacerbated the Mito-FAP-induced mitochondrial dysfunction and sensitized cells to apoptotic cell death. This profound sensitivity of telomeres through hydrogen peroxide induced by dysregulated mitochondria reveals a crucial mechanism of telomere-mitochondria communication underlying the pathophysiological role of mitochondrial ROS in human diseases.


Assuntos
Mitocôndrias/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Telômero/metabolismo , Apoptose/efeitos dos fármacos , Ciclo Celular , Proliferação de Células/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Reparo do DNA , DNA Mitocondrial/metabolismo , Células HEK293 , Humanos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/toxicidade , Potenciais da Membrana , Doenças Mitocondriais/metabolismo , Estresse Oxidativo , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/toxicidade , Transdução de Sinais , Superóxidos/metabolismo , Superóxidos/toxicidade , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
7.
Nat Struct Mol Biol ; 26(8): 695-703, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31332353

RESUMO

UV-DDB, a key protein in human global nucleotide excision repair (NER), binds avidly to abasic sites and 8-oxo-guanine (8-oxoG), suggesting a noncanonical role in base excision repair (BER). We investigated whether UV-DDB can stimulate BER for these two common forms of DNA damage, 8-oxoG and abasic sites, which are repaired by 8-oxoguanine glycosylase (OGG1) and apurinic/apyrimidinic endonuclease (APE1), respectively. UV-DDB increased both OGG1 and APE1 strand cleavage and stimulated subsequent DNA polymerase ß-gap filling activity by 30-fold. Single-molecule real-time imaging revealed that UV-DDB forms transient complexes with OGG1 or APE1, facilitating their dissociation from DNA. Furthermore, UV-DDB moves to sites of 8-oxoG repair in cells, and UV-DDB depletion sensitizes cells to oxidative DNA damage. We propose that UV-DDB is a general sensor of DNA damage in both NER and BER pathways, facilitating damage recognition in the context of chromatin.


Assuntos
Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/fisiologia , Linhagem Celular , Dano ao DNA , DNA Glicosilases/química , DNA Glicosilases/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/deficiência , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , Dímeros de Pirimidina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Imagem Individual de Molécula , Especificidade por Substrato , Xeroderma Pigmentoso/patologia
8.
Mol Cell ; 75(1): 117-130.e6, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31101499

RESUMO

Telomeres are essential for genome stability. Oxidative stress caused by excess reactive oxygen species (ROS) accelerates telomere shortening. Although telomeres are hypersensitive to ROS-mediated 8-oxoguanine (8-oxoG) formation, the biological effect of this common lesion at telomeres is poorly understood because ROS have pleiotropic effects. Here we developed a chemoptogenetic tool that selectively produces 8-oxoG only at telomeres. Acute telomeric 8-oxoG formation increased telomere fragility in cells lacking OGG1, the enzyme that removes 8-oxoG, but did not compromise cell survival. However, chronic telomeric 8-oxoG induction over time shortens telomeres and impairs cell growth. Accumulation of telomeric 8-oxoG in chronically exposed OGG1-deficient cells triggers replication stress, as evidenced by mitotic DNA synthesis at telomeres, and significantly increases telomere losses. These losses generate chromosome fusions, leading to chromatin bridges and micronucleus formation upon cell division. By confining base damage to the telomeres, we show that telomeric 8-oxoG accumulation directly drives telomere crisis.


Assuntos
Aberrações Cromossômicas/efeitos da radiação , DNA Glicosilases/genética , Reparo do DNA/efeitos da radiação , Instabilidade Genômica/efeitos da radiação , Guanina/análogos & derivados , Telômero/efeitos da radiação , Divisão Celular/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Dano ao DNA , DNA Glicosilases/deficiência , Replicação do DNA/efeitos da radiação , Expressão Gênica , Guanina/agonistas , Guanina/biossíntese , Células HeLa , Humanos , Luz/efeitos adversos , Micronúcleos com Defeito Cromossômico/efeitos da radiação , Optogenética , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteoblastos/efeitos da radiação , Estresse Oxidativo/efeitos da radiação , Oxigênio Singlete/agonistas , Oxigênio Singlete/metabolismo , Telômero/metabolismo , Homeostase do Telômero/efeitos da radiação
9.
Mech Ageing Dev ; 177: 37-45, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29604323

RESUMO

Telomeres are dynamic nucleoprotein-DNA structures that cap and protect linear chromosome ends. Because telomeres shorten progressively with each replication, they impose a functional limit on the number of times a cell can divide. Critically short telomeres trigger cellular senescence in normal cells, or genomic instability in pre-malignant cells, which contribute to numerous degenerative and aging-related diseases including cancer. Therefore, a detailed understanding of the mechanisms of telomere loss and preservation is important for human health. Numerous studies have shown that oxidative stress is associated with accelerated telomere shortening and dysfunction. Oxidative stress caused by inflammation, intrinsic cell factors or environmental exposures, contributes to the pathogenesis of many degenerative diseases and cancer. Here we review the studies demonstrating associations between oxidative stress and accelerated telomere attrition in human tissue, mice and cell culture, and discuss possible mechanisms and cellular pathways that protect telomeres from oxidative damage.


Assuntos
Envelhecimento/metabolismo , Dano ao DNA , Exposição Ambiental/efeitos adversos , Estresse Oxidativo , Envelhecimento/patologia , Animais , Humanos , Camundongos , Oxirredução
10.
Molecules ; 22(12)2017 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-29207465

RESUMO

Measurement of telomere length by fluorescent in situ hybridization is widely used for biomedical and epidemiological research, but there has been relatively little development of the technology in the 20 years since it was first reported. This report describes the use of dual gammaPNA (γPNA) probes that hybridize at alternating sites along a telomere and give rise to Förster resonance energy transfer (FRET) signals. Bright staining of telomeres is observed in nuclei, chromosome spreads and tissue samples. The use of FRET detection also allows for elimination of wash steps, normally required to remove unhybridized probes that would contribute to background signals. We found that these wash steps can diminish the signal intensity through the removal of bound, as well as unbound probes, so eliminating these steps not only accelerates the process but also enhances the quality of staining. Thus, γPNA FRET pairs allow for brighter and faster staining of telomeres in a wide range of research and clinical formats.


Assuntos
DNA/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Hibridização in Situ Fluorescente/métodos , Telômero/metabolismo , Sequência de Bases , Contagem de Células , Linhagem Celular , Corantes Fluorescentes/química , Humanos , Estrutura Molecular , Hibridização de Ácido Nucleico , Imagem Óptica/métodos , Osteossarcoma , Ácidos Nucleicos Peptídicos/metabolismo
11.
Nat Struct Mol Biol ; 23(12): 1092-1100, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27820808

RESUMO

Changes in telomere length are associated with degenerative diseases and cancer. Oxidative stress and DNA damage have been linked to both positive and negative alterations in telomere length and integrity. Here we examined how the common oxidative lesion 8-oxo-7,8-dihydro-2'-deoxyguanine (8-oxoG) regulates telomere elongation by human telomerase. When 8-oxoG is present in the dNTP pool as 8-oxodGTP, telomerase utilization of the oxidized nucleotide during telomere extension is mutagenic and terminates further elongation. Depletion of MTH1, the enzyme that removes oxidized dNTPs, increases telomere dysfunction and cell death in telomerase-positive cancer cells with shortened telomeres. In contrast, a preexisting 8-oxoG within the telomeric DNA sequence promotes telomerase activity by destabilizing the G-quadruplex DNA structure. We show that the mechanism by which 8-oxoG arises in telomeres, either by insertion of oxidized nucleotides or by direct reaction with free radicals, dictates whether telomerase is inhibited or stimulated and thereby mediates the biological outcome.


Assuntos
Nucleotídeos de Desoxiguanina/metabolismo , Estresse Oxidativo , Telomerase/metabolismo , Telômero/metabolismo , Sequência de Bases , Morte Celular , Linhagem Celular , Linhagem Celular Tumoral , DNA/química , DNA/metabolismo , Adutos de DNA/química , Adutos de DNA/metabolismo , Dano ao DNA , Nucleotídeos de Desoxiguanina/química , Ativação Enzimática , Quadruplex G , Humanos , Mutagênicos/química , Mutagênicos/metabolismo , Oxirredução , Telômero/química , Encurtamento do Telômero
12.
DNA Repair (Amst) ; 23: 27-32, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25283336

RESUMO

Nicotinamide adenine dinucleotide, NAD(+), is a small metabolite coenzyme that is essential for the progress of crucial cellular pathways including glycolysis, the tricarboxylic acid cycle (TCA) and mitochondrial respiration. These processes consume and produce both oxidative and reduced forms of NAD (NAD(+) and NADH). NAD(+) is also important for ADP(ribosyl)ation reactions mediated by the ADP-ribosyltransferase enzymes (ARTDs) or deacetylation reactions catalyzed by the sirtuins (SIRTs) which use NAD(+) as a substrate. In this review, we highlight the significance of NAD(+) catabolism in DNA repair and cell death through its utilization by ARTDs and SIRTs. We summarize the current findings on the involvement of ARTD1 activity in DNA repair and most specifically its involvement in the trigger of cell death mediated by ARTD1 activation and energy depletion. By sharing the same substrate, the activities of ARTDs and SIRTs are tightly linked, are dependent on each other and are thereby involved in the same cellular processes that play an important role in cancer biology, inflammatory diseases and ischaemia/reperfusion.


Assuntos
Reparo do DNA/fisiologia , NAD/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Animais , Morte Celular/genética , Dano ao DNA , Ativação Enzimática , Glicólise , Humanos , Redes e Vias Metabólicas , Oxirredução , Poli(ADP-Ribose) Polimerase-1 , Poli Adenosina Difosfato Ribose/metabolismo , Sirtuínas/metabolismo
13.
Cell Rep ; 8(6): 1819-1831, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25220464

RESUMO

ARTD1 (PARP1) is a key enzyme involved in DNA repair through the synthesis of poly(ADP-ribose) (PAR) in response to strand breaks, and it plays an important role in cell death following excessive DNA damage. ARTD1-induced cell death is associated with NAD(+) depletion and ATP loss; however, the molecular mechanism of ARTD1-mediated energy collapse remains elusive. Using real-time metabolic measurements, we compared the effects of ARTD1 activation and direct NAD(+) depletion. We found that ARTD1-mediated PAR synthesis, but not direct NAD(+) depletion, resulted in a block to glycolysis and ATP loss. We then established a proteomics-based PAR interactome after DNA damage and identified hexokinase 1 (HK1) as a PAR binding protein. HK1 activity is suppressed following nuclear ARTD1 activation and binding by PAR. These findings help explain how prolonged activation of ARTD1 triggers energy collapse and cell death, revealing insight into the importance of nucleus-to-mitochondria communication via ARTD1 activation.


Assuntos
Glicólise/fisiologia , Hexoquinase/metabolismo , NAD/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Dano ao DNA , Reparo do DNA , Metabolismo Energético , Glicosídeo Hidrolases/antagonistas & inibidores , Glicosídeo Hidrolases/metabolismo , Hexoquinase/química , Humanos , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Domínios e Motivos de Interação entre Proteínas , Proteômica , Alinhamento de Sequência
14.
Nucleic Acids Res ; 42(12): 7776-92, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24906880

RESUMO

Poly(ADP-ribosyl)ation is involved in numerous bio-logical processes including DNA repair, transcription and cell death. Cellular levels of poly(ADP-ribose) (PAR) are regulated by PAR polymerases (PARPs) and the degrading enzyme PAR glycohydrolase (PARG), controlling the cell fate decision between life and death in response to DNA damage. Replication stress is a source of DNA damage, leading to transient stalling of replication forks or to their collapse followed by the generation of double-strand breaks (DSB). The involvement of PARP-1 in replicative stress response has been described, whereas the consequences of a deregulated PAR catabolism are not yet well established. Here, we show that PARG-deprived cells showed an enhanced sensitivity to the replication inhibitor hydroxyurea. PARG is dispensable to recover from transient replicative stress but is necessary to avoid massive PAR production upon prolonged replicative stress, conditions leading to fork collapse and DSB. Extensive PAR accumulation impairs replication protein A association with collapsed forks resulting in compromised DSB repair via homologous recombination. Our results highlight the critical role of PARG in tightly controlling PAR levels produced upon genotoxic stress to prevent the detrimental effects of PAR over-accumulation.


Assuntos
Reparo do DNA , Replicação do DNA , Glicosídeo Hidrolases/fisiologia , Poli Adenosina Difosfato Ribose/metabolismo , Linhagem Celular , Cromatina/metabolismo , DNA de Cadeia Simples/análise , Células HeLa , Histonas/metabolismo , Humanos , Hidroxiureia/farmacologia , Fosforilação , Inibidores de Poli(ADP-Ribose) Polimerases , Reparo de DNA por Recombinação , Proteína de Replicação A/metabolismo , Fase S/efeitos dos fármacos , Pontos de Checagem da Fase S do Ciclo Celular , Estresse Fisiológico/genética
15.
Chem Res Toxicol ; 26(1): 156-68, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23234400

RESUMO

Derivatives of methyl 3-(1-methyl-5-(1-methyl-5-(propylcarbamoyl)-1H-pyrrol-3-ylcarbamoyl)-1H-pyrrol-3-ylamino)-3-oxopropane-1-sulfonate (1), a peptide-based DNA minor groove binding methylating agent, were synthesized and characterized. In all cases, the N-terminus was appended with an O-methyl sulfonate ester, while the C-terminus group was varied with nonpolar and polar side chains. In addition, the number of pyrrole rings was varied from 2 (dipeptide) to 3 (tripeptide). The ability of the different analogues to efficiently generate N3-methyladenine was demonstrated as was their selectivity for minor groove (N3-methyladenine) versus major groove (N7-methylguanine) methylation. Induced circular dichroism studies were used to measure the DNA equilibrium binding properties of the stable sulfone analogues; the tripeptide binds with affinity that is >10-fold higher than that of the dipeptide. The toxicities of the compounds were evaluated in alkA/tag glycosylase mutant E. coli and in human WT glioma cells and in cells overexpressing and under-expressing N-methylpurine-DNA glycosylase, which excises N3-methyladenine from DNA. The results show that equilibrium binding correlates with the levels of N3-methyladenine produced and cellular toxicity. The toxicity of 1 was inversely related to the expression of MPG in both the bacterial and mammalian cell lines. The enhanced toxicity parallels the reduced activation of PARP and the diminished rate of formation of aldehyde reactive sites observed in the MPG knockdown cells. It is proposed that unrepaired N3-methyladenine is toxic due to its ability to directly block DNA polymerization.


Assuntos
Alquilantes/síntese química , DNA/química , Adenina/análogos & derivados , Adenina/química , Alquilantes/química , Alquilantes/toxicidade , Animais , Bovinos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , DNA/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , DNA Glicosilases/química , DNA Glicosilases/metabolismo , Metilação de DNA , Escherichia coli/enzimologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Humanos , Peptídeos/química , Peptídeos/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Termodinâmica
16.
Nucleic Acids Res ; 39(12): 5045-56, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21398629

RESUMO

Post-translational poly(ADP-ribosyl)ation has diverse essential functions in the cellular response to DNA damage as it contributes to avid DNA damage detection and assembly of the cellular repair machinery but extensive modification eventually also induces cell death. While there are 17 human poly(ADP-ribose) polymerase (PARP) genes, there is only one poly(ADP-ribose) glycohydrolase (PARG) gene encoding several PARG isoforms located in different subcellular compartments. To investigate the recruitment of PARG isoforms to DNA repair sites we locally introduced DNA damage by laser microirradiation. All PARG isoforms were recruited to DNA damage sites except for a mitochondrial localized PARG fragment. Using PARP knock out cells and PARP inhibitors, we showed that PARG recruitment was only partially dependent on PARP-1 and PAR synthesis, indicating a second, PAR-independent recruitment mechanism. We found that PARG interacts with PCNA, mapped a PCNA binding site and showed that binding to PCNA contributes to PARG recruitment to DNA damage sites. This dual recruitment mode of the only nuclear PARG via the versatile loading platform PCNA and by a PAR dependent mechanism likely contributes to the dynamic regulation of this posttranslational modification and ensures the tight control of the switch between efficient DNA repair and cell death.


Assuntos
Dano ao DNA , Glicosídeo Hidrolases/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Animais , Biocatálise , Células Cultivadas , Glicosídeo Hidrolases/análise , Glicosídeo Hidrolases/química , Humanos , Lasers , Camundongos , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína
17.
J Cell Sci ; 122(Pt 12): 1990-2002, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19454480

RESUMO

Poly(ADP-ribosyl)ation is a post-translational modification of proteins involved in the regulation of chromatin structure, DNA metabolism, cell division and cell death. Through the hydrolysis of poly(ADP-ribose) (PAR), Poly(ADP-ribose) glycohydrolase (PARG) has a crucial role in the control of life-and-death balance following DNA insult. Comprehension of PARG function has been hindered by the existence of many PARG isoforms encoded by a single gene and displaying various subcellular localizations. To gain insight into the function of PARG in response to irradiation, we constitutively and stably knocked down expression of PARG isoforms in HeLa cells. PARG depletion leading to PAR accumulation was not deleterious to undamaged cells and was in fact rather beneficial, because it protected cells from spontaneous single-strand breaks and telomeric abnormalities. By contrast, PARG-deficient cells showed increased radiosensitivity, caused by defects in the repair of single- and double-strand breaks and in mitotic spindle checkpoint, leading to alteration of progression of mitosis. Irradiated PARG-deficient cells displayed centrosome amplification leading to mitotic supernumerary spindle poles, and accumulated aberrant mitotic figures, which induced either polyploidy or cell death by mitotic catastrophe. Our results suggest that PARG could be a novel potential therapeutic target for radiotherapy.


Assuntos
Glicosídeo Hidrolases/genética , Mitose/efeitos da radiação , Tolerância a Radiação/genética , Centrossomo/fisiologia , Centrossomo/efeitos da radiação , Aberrações Cromossômicas/efeitos da radiação , Quebras de DNA/efeitos da radiação , Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , Técnicas de Silenciamento de Genes , Glicosídeo Hidrolases/antagonistas & inibidores , Células HeLa , Humanos , Cinetocoros/fisiologia , Cinetocoros/efeitos da radiação , Mitose/genética , Poli Adenosina Difosfato Ribose/metabolismo , RNA Interferente Pequeno/farmacologia , Telômero/efeitos da radiação
18.
Methods Mol Biol ; 464: 267-83, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18951190

RESUMO

Poly(ADP-ribosyl)ation is a posttranslational modification of proteins in higher eukaryotes mediated by poly(ADP-ribose) polymerases (PARPs) that is involved in many physiological processes such as DNA repair, transcription, cell division, and cell death. Biochemical studies together with PARP-1- or PARP-2-deficient cellular and animal models have revealed the redundant but also complementary functions of the two enzymes in the surveillance and maintenance of genome integrity. Poly(ADP-ribose) is degraded by the endo- and exo-glycosidase activities of poly(ADP-ribose) glycohydrolase (PARG). In this chapter, biochemical and immunofluorescence methods are described for detecting and assaying PARPs and PARG.


Assuntos
Dano ao DNA/fisiologia , Poli Adenosina Difosfato Ribose/metabolismo , Animais , Western Blotting , Imunofluorescência , Glicosídeo Hidrolases/metabolismo , Humanos , Poli(ADP-Ribose) Polimerases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA