Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Catal ; 13(2): 856-865, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36733639

RESUMO

The high turnover rates of [FeFe]-hydrogenases under mild conditions and at low overpotentials provide a natural blueprint for the design of hydrogen catalysts. However, the unique active site (H-cluster) degrades upon contact with oxygen. The [FeFe]-hydrogenase fromClostridium beijerinckii (CbA5H) is characterized by the flexibility of its protein structure, which allows a conserved cysteine to coordinate to the active site under oxidative conditions. Thereby, intrinsic cofactor degradation induced by dioxygen is minimized. However, the protection from O2 is only partial, and the activity of the enzyme decreases upon each exposure to O2. By using site-directed mutagenesis in combination with electrochemistry, ATR-FTIR spectroscopy, and molecular dynamics simulations, we show that the kinetics of the conversion between the oxygen-protected inactive state (cysteine-bound) and the oxygen-sensitive active state can be accelerated by replacing a surface residue that is very distant from the active site. This sole exchange of methionine for a glutamate residue leads to an increased resistance of the hydrogenase to dioxygen. With our study, we aim to understand how local modifications of the protein structure can have a crucial impact on protein dynamics and how they can control the reactivity of inorganic active sites through outer sphere effects.

2.
Inorg Chem ; 62(8): 3321-3332, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36780646

RESUMO

Potential inversion refers to the situation where a protein cofactor or a synthetic molecule can be oxidized or reduced twice in a cooperative manner; that is, the second electron transfer is easier than the first. This property is very important regarding the catalytic mechanism of enzymes that bifurcate electrons and the properties of bidirectional redox molecular catalysts that function in either direction of the reaction with no overpotential. Cyclic voltammetry is the most common technique for characterizing the thermodynamics and kinetics of electron transfer to or from these molecules. However, a gap in the literature is the absence of analytical predictions to help interpret the values of the voltammetric peak potentials when potential inversion occurs; the cyclic voltammograms are therefore often analyzed by simulating the data, with no discussion of the possibility of overfitting and often no estimation of the error on the determined parameters. Here we formulate the theory for the voltammetry of freely diffusing or surface-confined two-electron redox species in the experimentally relevant irreversible limit where the peak separation depends on the scan rate. We explain why the model is intrinsically underdetermined, and we illustrate this conclusion by analysis of the voltammetry of a nickel complex with redox-active iminosemiquinone ligands. Being able to characterize the thermodynamics of two-electron electron-transfer reactions will be crucial for designing more efficient catalysts.

3.
Nat Commun ; 12(1): 756, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531463

RESUMO

[FeFe]-hydrogenases are efficient H2-catalysts, yet upon contact with dioxygen their catalytic cofactor (H-cluster) is irreversibly inactivated. Here, we combine X-ray crystallography, rational protein design, direct electrochemistry, and Fourier-transform infrared spectroscopy to describe a protein morphing mechanism that controls the reversible transition between the catalytic Hox-state and the inactive but oxygen-resistant Hinact-state in [FeFe]-hydrogenase CbA5H of Clostridium beijerinckii. The X-ray structure of air-exposed CbA5H reveals that a conserved cysteine residue in the local environment of the active site (H-cluster) directly coordinates the substrate-binding site, providing a safety cap that prevents O2-binding and consequently, cofactor degradation. This protection mechanism depends on three non-conserved amino acids situated approximately 13 Å away from the H-cluster, demonstrating that the 1st coordination sphere chemistry of the H-cluster can be remote-controlled by distant residues.


Assuntos
Cristalografia por Raios X/métodos , Sítios de Ligação , Domínio Catalítico , Clostridium beijerinckii/enzimologia , Clostridium beijerinckii/patogenicidade , Eletroquímica , Cinética , Modelos Teóricos , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Elife ; 72018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30277213

RESUMO

The C-cluster of the enzyme carbon monoxide dehydrogenase (CODH) is a structurally distinctive Ni-Fe-S cluster employed to catalyze the reduction of CO2 to CO as part of the Wood-Ljungdahl carbon fixation pathway. Using X-ray crystallography, we have observed unprecedented conformational dynamics in the C-cluster of the CODH from Desulfovibrio vulgaris, providing the first view of an oxidized state of the cluster. Combined with supporting spectroscopic data, our structures reveal that this novel, oxidized cluster arrangement plays a role in avoiding irreversible oxidative degradation at the C-cluster. Furthermore, mutagenesis of a conserved cysteine residue that binds the C-cluster in the oxidized state but not in the reduced state suggests that the oxidized conformation could be important for proper cluster assembly, in particular Ni incorporation. Together, these results lay a foundation for future investigations of C-cluster activation and assembly, and contribute to an emerging paradigm of metallocluster plasticity.


Assuntos
Aldeído Oxirredutases/metabolismo , Proteínas de Bactérias/metabolismo , Desulfovibrio vulgaris/enzimologia , Proteínas Ferro-Enxofre/metabolismo , Complexos Multienzimáticos/metabolismo , Aldeído Oxirredutases/química , Aldeído Oxirredutases/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação/genética , Monóxido de Carbono/metabolismo , Cristalografia por Raios X , Desulfovibrio vulgaris/genética , Desulfovibrio vulgaris/metabolismo , Ferro/química , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética , Modelos Moleculares , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Mutação , Níquel/química , Oxirredução , Conformação Proteica , Enxofre/química
5.
Angew Chem Int Ed Engl ; 56(16): 4388-4390, 2017 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-28300341

RESUMO

Potential for nitrogenase: Milton, Minteer, and co-workers report the first evidence for the bioelectrochemical reduction of N2 to ammonia by nitrogenase. This complex enzyme could be wired to an electrode by using the soluble mediator methyl viologen; this very simple approach makes it possible to develop a variety of biotechnological devices.


Assuntos
Trifosfato de Adenosina/metabolismo , Eletrodos , Nitrogênio/metabolismo , Nitrogenase/metabolismo , Trifosfato de Adenosina/química , Hidrólise , Modelos Moleculares , Nitrogênio/química , Nitrogenase/química , Oxirredução
6.
Nat Chem ; 9(1): 88-95, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27995927

RESUMO

FeFe hydrogenases are the most efficient H2-producing enzymes. However, inactivation by O2 remains an obstacle that prevents them being used in many biotechnological devices. Here, we combine electrochemistry, site-directed mutagenesis, molecular dynamics and quantum chemical calculations to uncover the molecular mechanism of O2 diffusion within the enzyme and its reactions at the active site. We propose that the partial reversibility of the reaction with O2 results from the four-electron reduction of O2 to water. The third electron/proton transfer step is the bottleneck for water production, competing with formation of a highly reactive OH radical and hydroxylated cysteine. The rapid delivery of electrons and protons to the active site is therefore crucial to prevent the accumulation of these aggressive species during prolonged O2 exposure. These findings should provide important clues for the design of hydrogenase mutants with increased resistance to oxidative damage.


Assuntos
Hidrogênio/química , Hidrogenase/química , Oxigênio/química , Catálise , Clostridium/enzimologia , Difusão , Técnicas Eletroquímicas , Hidrogenase/genética , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Oxirredução , Teoria Quântica
7.
Biochemistry ; 55(41): 5798-5808, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27677419

RESUMO

RimO, a radical-S-adenosylmethionine (SAM) enzyme, catalyzes the specific C3 methylthiolation of the D89 residue in the ribosomal S12 protein. Two intact iron-sulfur clusters and two SAM cofactors both are required for catalysis. By using electron paramagnetic resonance, Mössbauer spectroscopies, and site-directed mutagenesis, we show how two SAM molecules sequentially bind to the unique iron site of the radical-SAM cluster for two distinct chemical reactions in RimO. Our data establish that the two SAM molecules bind the radical-SAM cluster to the unique iron site, and spectroscopic evidence obtained under strongly reducing conditions supports a mechanism in which the first molecule of SAM causes the reoxidation of the reduced radical-SAM cluster, impeding reductive cleavage of SAM to occur and allowing SAM to methylate a HS- ligand bound to the additional cluster. Furthermore, by using density functional theory-based methods, we provide a description of the reaction mechanism that predicts the attack of the carbon radical substrate on the methylthio group attached to the additional [4Fe-4S] cluster.


Assuntos
Proteínas Ferro-Enxofre/metabolismo , S-Adenosilmetionina/metabolismo , Sulfurtransferases/metabolismo , Catálise , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutagênese Sítio-Dirigida , Oxirredução , Análise Espectral/métodos , Sulfurtransferases/genética
8.
J Biol Inorg Chem ; 18(6): 693-700, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23793236

RESUMO

[FeFe] hydrogenases are H2-evolving enzymes that feature a diiron cluster in their active site (the [2Fe]H cluster). One of the iron atoms has a vacant coordination site that directly interacts with H2, thus favoring its splitting in cooperation with the secondary amine group of a neighboring, flexible azadithiolate ligand. The vacant site is also the primary target of the inhibitor O2. The [2Fe]H cluster can span various redox states. The active-ready form (Hox) attains the Fe(II)Fe(I) state. States more oxidized than Hox were shown to be inactive and/or resistant to O2. In this work, we used density functional theory to evaluate whether azadithiolate-to-iron coordination is involved in oxidative inhibition and protection against O2, a hypothesis supported by recent results on biomimetic compounds. Our study shows that Fe-N(azadithiolate) bond formation is favored for an Fe(II)Fe(II) active-site model which disregards explicit treatment of the surrounding protein matrix, in line with the case of the corresponding Fe(II)Fe(II) synthetic system. However, the study of density functional theory models with explicit inclusion of the amino acid environment around the [2Fe]H cluster indicates that the protein matrix prevents the formation of such a bond. Our results suggest that mechanisms other than the binding of the azadithiolate nitrogen protect the active site from oxygen in the so-called H ox (inact) state.


Assuntos
Aminas/química , Hidrogênio/química , Hidrogenase/química , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Aminas/metabolismo , Biocatálise , Hidrogênio/metabolismo , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA