Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 11(10): e1005228, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26506000

RESUMO

Phytopathogenic ascomycete fungi possess huge effector repertoires that are dominated by hundreds of sequence-unrelated small secreted proteins. The molecular function of these effectors and the evolutionary mechanisms that generate this tremendous number of singleton genes are largely unknown. To get a deeper understanding of fungal effectors, we determined by NMR spectroscopy the 3-dimensional structures of the Magnaporthe oryzae effectors AVR1-CO39 and AVR-Pia. Despite a lack of sequence similarity, both proteins have very similar 6 ß-sandwich structures that are stabilized in both cases by a disulfide bridge between 2 conserved cysteins located in similar positions of the proteins. Structural similarity searches revealed that AvrPiz-t, another effector from M. oryzae, and ToxB, an effector of the wheat tan spot pathogen Pyrenophora tritici-repentis have the same structures suggesting the existence of a family of sequence-unrelated but structurally conserved fungal effectors that we named MAX-effectors (Magnaporthe Avrs and ToxB like). Structure-informed pattern searches strengthened this hypothesis by identifying MAX-effector candidates in a broad range of ascomycete phytopathogens. Strong expansion of the MAX-effector family was detected in M. oryzae and M. grisea where they seem to be particularly important since they account for 5-10% of the effector repertoire and 50% of the cloned avirulence effectors. Expression analysis indicated that the majority of M. oryzae MAX-effectors are expressed specifically during early infection suggesting important functions during biotrophic host colonization. We hypothesize that the scenario observed for MAX-effectors can serve as a paradigm for ascomycete effector diversity and that the enormous number of sequence-unrelated ascomycete effectors may in fact belong to a restricted set of structurally conserved effector families.


Assuntos
Ascomicetos/química , Sequência de Aminoácidos , Ascomicetos/patogenicidade , Proteínas Fúngicas/química , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Estrutura Secundária de Proteína
2.
FEMS Microbiol Lett ; 277(1): 1-10, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17986079

RESUMO

Botrytis cinerea is responsible for the gray mold disease on more than 200 host plants. This necrotrophic ascomycete displays the capacity to kill host cells through the production of toxins, reactive oxygen species and the induction of a plant-produced oxidative burst. Thanks to an arsenal of degrading enzymes, B. cinerea is then able to feed on different plant tissues. Recent molecular approaches, for example on characterizing components of signal transduction pathways, show that this fungus shares conserved virulence factors with other phytopathogens, but also highlight some Botrytis-specific features. The discovery of some first strain-specific virulence factors, together with population data, even suggests a possible host adaptation of the strains. The availability of the genome sequence now stimulates the development of high-throughput functional analysis to decipher the mechanisms involved in the large host range of this species.


Assuntos
Botrytis/patogenicidade , Fabaceae/microbiologia , Doenças das Plantas/microbiologia , Botrytis/classificação , Botrytis/genética , Botrytis/fisiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Micotoxinas/metabolismo , Folhas de Planta/microbiologia , Explosão Respiratória , Transdução de Sinais , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA