Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Virol ; 87(17): 9610-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23804638

RESUMO

Adenoviruses (Ads) are promising vectors for therapeutic interventions in humans. When injected into the bloodstream, Ad vectors can bind several vitamin K-dependent blood coagulation factors, which contributes to virus sequestration in the liver by facilitating transduction of hepatocytes. Although both coagulation factors FVII and FX bind the hexon protein of human Ad serotype 5 (HAdv5) with a very high affinity, only FX appears to play a role in mediating Ad-hepatocyte transduction in vivo. To understand the discrepancy between efficacy of FVII binding to hexon and its apparently poor capacity for supporting virus cell entry, we analyzed the HAdv5-FVII complex by using high-resolution cryo-electron microscopy (cryo-EM) followed by molecular dynamic flexible fitting (MDFF) simulations. The results indicate that although hexon amino acids T423, E424, and T425, identified earlier as critical for FX binding, are also involved in mediating binding of FVII, the FVII GLA domain sits within the surface-exposed hexon trimer depression in a different orientation from that found for FX. Furthermore, we found that when bound to hexon, two proximal FVII molecules interact via their serine protease (SP) domains and bury potential heparan sulfate proteoglycan (HSPG) receptor binding residues within the dimer interface. In contrast, earlier cryo-EM studies of the Ad-FX interaction showed no evidence of dimer formation. Dimerization of FVII bound to Ad may be a contributing mechanistic factor for the differential infectivity of Ad-FX and Ad-FVII complexes, despite high-affinity binding of both these coagulation factors to the virus.


Assuntos
Adenovírus Humanos/genética , Adenovírus Humanos/fisiologia , Fator VII/química , Fator VII/metabolismo , Fator X/química , Fator X/metabolismo , Vetores Genéticos , Animais , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Internalização do Vírus
2.
PLoS One ; 7(11): e49607, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23166728

RESUMO

Adenoviral (Ad) vectors show promise as platforms for vaccine applications against infectious diseases including HIV. However, the requirements for eliciting protective neutralizing antibody and cellular immune responses against HIV remain a major challenge. In a novel approach to generate 2F5- and 4E10-like antibodies, we engineered an Ad vector with the HIV membrane proximal ectodomain region (MPER) epitope displayed on the hypervariable region 2 (HVR2) of the viral hexon capsid, instead of expressed as a transgene. The structure and flexibility of MPER epitopes, and the structural context of these epitopes within viral vectors, play important roles in the induced host immune responses. In this regard, understanding the critical factors for epitope presentation would facilitate optimization strategies for developing viral vaccine vectors. Therefore we undertook a cryoEM structural study of this Ad vector, which was previously shown to elicit MPER-specific humoral immune responses. A subnanometer resolution cryoEM structure was analyzed with guided molecular dynamics simulations. Due to the arrangement of hexons within the Ad capsid, there are twelve unique environments for the inserted peptide that lead to a variety of conformations for MPER, including individual α-helices, interacting α-helices, and partially extended forms. This finding is consistent with the known conformational flexibility of MPER. The presence of an extended form, or an induced extended form, is supported by interaction of this vector with the human HIV monoclonal antibody 2F5, which recognizes 14 extended amino acids within MPER. These results demonstrate that the Ad capsid influences epitope structure, flexibility and accessibility, all of which affect the host immune response. In summary, this cryoEM structural study provided a means to visualize an epitope presented on an engineered viral vector and suggested modifications for the next generation of Ad vectors with capsid-incorporated HIV epitopes.


Assuntos
Adenoviridae/química , Proteínas do Capsídeo/química , Microscopia Crioeletrônica , Antígenos HIV/química , Proteínas do Capsídeo/metabolismo , Epitopos/química , Vetores Genéticos/química , Antígenos HIV/metabolismo , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/metabolismo , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptídeos/química , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA